A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Overview

Fast Symbolic Regression

Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aims at providing the most simple, powerful models possible by optimizing not only for error but also for model complexity. fastsr is built on top of fastgp, a numpy implementation of genetic programming built on top of deap. All estimators adhere to the sklearn estimator interface and can thus be used in pipelines.

fastsr was designed and developed by the Morphology, Evolution & Cognition Laboratory at the University of Vermont. It extends research code which can be found here.

Installation

fastsr is compatible with Python 2.7+.

pip install fastsr

Example Usage

Symbolic Regression is really good at fitting nonlinear functions. Let's try to fit the third order polynomial x^3 + x^2 + x. This is the "regression" example from the examples folder.

import matplotlib.pyplot as plt

import numpy as np

from fastsr.estimators.symbolic_regression import SymbolicRegression

from fastgp.algorithms.fast_evaluate import fast_numpy_evaluate
from fastgp.parametrized.simple_parametrized_terminals import get_node_semantics
def target(x):
    return x**3 + x**2 + x

Now we'll generate some data on the domain [-10, 10].

X = np.linspace(-10, 10, 100, endpoint=True)
y = target(X)

Finally we'll create and fit the Symbolic Regression estimator and check the score.

sr = SymbolicRegression(seed=72066)
sr.fit(X, y)
score = sr.score(X, y)
Score: 0.0

Whoa! That's not much error. Don't get too used to scores like that though, real data sets aren't usually as simple as a third order polynomial.

fastsr uses Genetic Programming to fit the data. That means equations are evolving to fit the data better and better each generation. Let's have a look at the best individuals and their respective scores.

print('Best Individuals:')
sr.print_best_individuals()
Best Individuals:
0.0 : add(add(square(X0), cube(X0)), X0)
34.006734006733936 : add(square(X0), cube(X0))
2081.346746380927 : add(cube(X0), X0)
2115.3534803876605 : cube(X0)
137605.24466869785 : add(add(X0, add(X0, X0)), add(X0, X0))
141529.89102341252 : add(add(X0, X0), add(X0, X0))
145522.55084614072 : add(add(X0, X0), X0)
149583.22413688237 : add(X0, X0)
151203.96034032793 : numpy_protected_sqrt(cube(numpy_protected_log_abs(exp(X0))))
151203.96034032793 : cube(numpy_protected_sqrt(X0))
153711.91089563753 : numpy_protected_log_abs(exp(X0))
153711.91089563753 : X0
155827.26437602515 : square(X0)
156037.81673350732 : add(numpy_protected_sqrt(X0), cbrt(X0))
157192.02956807753 : numpy_protected_sqrt(exp(cbrt(X0)))

At the top we find our best individual, which is exactly the third order polynomial we defined our target function to be. You might be confused as to why we consider all these other individuals, some with very large errors be be "best". We can look through the history object to see some of the equations that led up to our winning model by ordering by error.

history = sr.history_
population = list(filter(lambda x: hasattr(x, 'error'), list(sr.history_.genealogy_history.values())))
population.sort(key=lambda x: x.error, reverse=True)

Let's get a sample of the unique solutions. There are quite a few so the print statements have been omitted.

X = X.reshape((len(X), 1))
i = 1
previous_errror = population[0]
unique_individuals = []
while i < len(population):
    ind = population[i]
    if ind.error != previous_errror:
        print(str(i) + ' | ' + str(ind.error) + ' | ' + str(ind))
        unique_individuals.append(ind)
    previous_errror = ind.error
    i += 1

Now we can plot the equations over the target functions.

def plot(index):
    plt.plot(X, y, 'r')
    plt.axis([-10, 10, -1000, 1000])
    y_hat = fast_numpy_evaluate(unique_individuals[index], sr.pset_.context, X, get_node_semantics)
    plt.plot(X, y_hat, 'g')
    plt.savefig(str(i) + 'ind.png')
    plt.gcf().clear()

i = 0
while i < len(unique_individuals):
    plot(i)
    i += 10
i = len(unique_individuals) - 1
plot(i)

Stitched together into a gif we get a view into the evolutionary process.

Convergence Gif

Fitness Age Size Complexity Pareto Optimization

In addition to minimizing the error when creating an interpretable model it's often useful to minimize the size of the equations and their complexity (as defined by the order of an approximating polynomial[1]). In Multi-Objective optimization we keep all individuals that are not dominated by any other individuals and call this group the Pareto Front. These are the individuals printed in the Example Usage above. The age component helps prevent the population of equations from falling into a local optimum and was introduced in AFPO [2] but is out of the scope of this readme.

The result of this optimization technique is that a range of solutions are considered "best" individuals. Although in practice you will probably be interested in the top or several top individuals, be aware that the population as a whole was pressured into keeping individual equations as simple as possible in addition to keeping error as low as possible.

Literature Cited

  1. Ekaterina J Vladislavleva, Guido F Smits, and Dick Den Hertog. 2009. Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. IEEE Transactions on Evolutionary Computation 13, 2 (2009), 333–349.
  2. Michael Schmidt and Hod Lipson. 2011. Age-fitness pareto optimization. In Genetic Programming Theory and Practice VIII. Springer, 129–146.
Owner
VAMSHI CHOWDARY
𝐃𝐀𝐓𝐀 π’π‚πˆπ„ππ‚π„ π„ππ“π‡π”π’πˆπ€π’π“
VAMSHI CHOWDARY
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras

SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te

Yuta Kamikawa 172 Dec 23, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视倩元 MegEngine 28 Dec 09, 2022
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
Intrusion Test Tool with Python

P3ntsT00L Uma ferramenta escrita em Python, feita para Teste de intrusΓ£o. Requisitos ter o python 3.9.8 instalado em sua mΓ‘quina. ter a git instalada

josh washington 2 Dec 27, 2021
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 πŸ€— HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022