DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

Overview

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou, Jiwen Lu,

This repository contains PyTorch implementation for DenseCLIP.

DenseCLIP is a new framework for dense prediction by implicitly and explicitly leveraging the pre-trained knowledge from CLIP. Specifically, we convert the original image-text matching problem in CLIP to a pixel-text matching problem and use the pixel-text score maps to guide the learning of dense prediction models. By further using the contextual information from the image to prompt the language model, we are able to facilitate our model to better exploit the pre-trained knowledge. Our method is model-agnostic, which can be applied to arbitrary dense prediction systems and various pre-trained visual backbones including both CLIP models and ImageNet pre-trained models.

intro

Our code is based on mmsegmentation and mmdetection and timm.

[Project Page] [arXiv]

Usage

Requirements

  • torch>=1.8.0
  • torchvision
  • timm
  • mmcv-full==1.3.17
  • mmseg==0.19.0
  • mmdet==2.17.0
  • fvcore

To use our code, please first install the mmcv-full and mmseg/mmdet following the official guidelines (mmseg, mmdet) and prepare the datasets accordingly.

Pre-trained CLIP Models

Download the pre-trained CLIP models (RN50.pt, RN101.pt, VIT-B-16.pt) and save them to the pretrained folder.

Segmentation

Model Zoo

We provide DenseCLIP models for Semantic FPN framework.

Model FLOPs (G) Params (M) mIoU(SS) mIoU(MS) config url
RN50-CLIP 248.8 31.0 36.9 43.5 config -
RN50-DenseCLIP 269.2 50.3 43.5 44.7 config Tsinghua Cloud
RN101-CLIP 326.6 50.0 42.7 44.3 config -
RN101-DenseCLIP 346.3 67.8 45.1 46.5 config Tsinghua Cloud
ViT-B-CLIP 1037.4 100.8 49.4 50.3 config -
ViT-B-DenseCLIP 1043.1 105.3 50.6 51.3 config Tsinghua Cloud

Training & Evaluation on ADE20K

To train the DenseCLIP model based on CLIP ResNet-50, run:

bash dist_train.sh configs/denseclip_fpn_res50_512x512_80k.py 8

To evaluate the performance with multi-scale testing, run:

bash dist_test.sh configs/denseclip_fpn_res50_512x512_80k.py /path/to/checkpoint 8 --eval mIoU --aug-test

To better measure the complexity of the models, we provide a tool based on fvcore to accurately compute the FLOPs of torch.einsum and other operations:

python get_flops.py /path/to/config --fvcore

You can also remove the --fvcore flag to obtain the FLOPs measured by mmcv for comparisons.

Detection

Model Zoo

We provide models for both RetinaNet and Mask-RCNN framework.

RetinaNet
Model FLOPs (G) Params (M) box AP config url
RN50-CLIP 265 38 36.9 config -
RN50-DenseCLIP 285 60 37.8 config Tsinghua Cloud
RN101-CLIP 341 57 40.5 config -
RN101-DenseCLIP 360 78 41.1 config Tsinghua Cloud
Mask R-CNN
Model FLOPs (G) Params (M) box AP mask AP config url
RN50-CLIP 301 44 39.3 36.8 config -
RN50-DenseCLIP 327 67 40.2 37.6 config Tsinghua Cloud
RN101-CLIP 377 63 42.2 38.9 config -
RN101-DenseCLIP 399 84 42.6 39.6 config Tsinghua Cloud

Training & Evaluation on COCO

To train our DenseCLIP-RN50 using RetinaNet framework, run

 bash dist_train.sh configs/retinanet_denseclip_r50_fpn_1x_coco.py 8

To evaluate the box AP of RN50-DenseCLIP (RetinaNet), run

bash dist_test.sh configs/retinanet_denseclip_r50_fpn_1x_coco.py /path/to/checkpoint 8 --eval bbox

To evaluate both the box AP and the mask AP of RN50-DenseCLIP (Mask-RCNN), run

bash dist_test.sh configs/mask_rcnn_denseclip_r50_fpn_1x_coco.py /path/to/checkpoint 8 --eval bbox segm

License

MIT License

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{rao2021denseclip,
  title={DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting},
  author={Rao, Yongming and Zhao, Wenliang and Chen, Guangyi and Tang, Yansong and Zhu, Zheng and Huang, Guan and Zhou, Jie and Lu, Jiwen},
  journal={arXiv preprint arXiv:2112.01518},
  year={2021}
}
Owner
Yongming Rao
Yongming Rao
The devkit of the nuScenes dataset.

nuScenes devkit Welcome to the devkit of the nuScenes and nuImages datasets. Overview Changelog Devkit setup nuImages nuImages setup Getting started w

Motional 1.6k Jan 05, 2023
Garbage classification using structure data.

垃圾分类模型使用说明 1.包含以下数据文件 文件 描述 data/MaterialMapping.csv 物体以及其归类的信息 data/TestRecords 光谱原始测试数据 CSV 文件 data/TestRecordDesc.zip CSV 文件描述文件 data/Boundaries.cs

wenqi 1 Dec 10, 2021
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Harry Yang 121 Dec 17, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor

Conchylicultor 2.9k Dec 28, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
Diffgram - Supervised Learning Data Platform

Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning

Diffgram 1.6k Jan 07, 2023
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022