DLWP: Deep Learning Weather Prediction

Overview

DLWP: Deep Learning Weather Prediction

DLWP is a Python project containing data-processing and model-building tools for predicting the gridded atmosphere using deep convolutional neural networks.

Reference

If you use this code or find it useful please cite our publication!

Getting started

For now, DLWP is not a package that can be installed using pip or a setup.py file, so it works like most research code: download (or checkout) and run.

Required dependencies

It is assumed that the following are installed using Anaconda Python 3 (Python 2.7 is supported).

  • TensorFlow (GPU capable version highly recommended). The conda package, while not the recommended installation method, is easy and also installs the required CUDA dependencies. For best performance, follow the instructions for installing from source.
    conda install tensorflow-gpu
  • Keras
    pip install keras
  • netCDF4
    conda install netCDF4
  • xarray
    conda install dask xarray

Optional dependencies

The following are required only for some of the DLWP features:

  • PyTorch: for torch-based deep learning models. Again the GPU-ready version is recommended.
    pip install torch torchvision
  • scikit-learn: for machine learning pre-processing tools such as Scalers and Imputers
    conda install scikit-learn
  • scipy: for CFS data interpolation
  • pygrib: for raw CFS data processing
    pip install pygrib
  • cdsapi: for retrieval of ERA5 data
    pip install cdsapi
  • pyspharm: spherical harmonics transforms for the barotropic model
    conda install -c conda-forge pyspharm

Quick overview

General framework

DLWP is built as a weather forecasting model that can, should performance improve greatly, "replace" and existing global weather or climate model. Essentially, this means that DLWP uses a deep convolutional neural network to map the state of the atmosphere at one time to the entire state of the atmophere at the next available time. A continuous forecast can then be made by feeding the model's predicted state back in as inputs, producing indefinite forecasts.

Data processing

The classes in DLWP.data provide tools for retrieving and processing raw data from the CFS reanalysis and reforecast and the ERA5 reanalysis. Meanwhile, the DLWP.model.preprocessing module provides tools for formatting the data for ingestion into the deep learning models. The following examples retrieve and process data from the CFS reanalysis:

  • examples/write_cfs.py
  • examples/write_cfs_predictors.py

The resulting file of predictor data can be ingested into the data generators for the models.

Keras models

The DLWP.model module contains classes for building and training Keras and PyTorch models. The DLWPNeuralNet class is essentially a wrapper for the simple Keras Sequential model, adding optional run-time scaling and imputing of data. It implements a few key methods:

  • build_model: use a custom API to assemble layers in a Sequential model. Also implements models running on multiple GPUs.
  • fit: scale the data and fit the model
  • fit_generator: use the Keras fit_generator method along with a custom data generator (see section below)
  • predict: predict with the model
  • predict_timeseries: predict a continuous time series forecast, where the output of one prediction iteration is used as the input for the next

An example of a model built and trained with the DLWP APIs using data generated by the DLWP processing methods, see examples/train.py.

DLWP also implements a DLWPFunctional class which implements the same methods as the DLWPNeuralNet class but takes as input to build_model a model assembled using the Keras functional API. For an example of training a functional model, see examples/train_functional.py.

PyTorch models

Currently, due to a focus on TensorFlow/Keras models, the PyTorch implementation in DLWP is more limited, although still robust. Like the Keras models, it implements a convenient build_model method to assemble a sequential-like model using the same API parameters as those for DLWPNeuralNet. Additionally, it also implements a fit method to automatically iterate through the data and optimizer, again, just like the Keras API.

The PyTorch example, train_torch.py, is somewhat outdated and uses the spherical convolution library s2cnn. This method has yet to produce good results.

Custom layers and functions

The DLWP.custom module contains many custom layers specifically for applying convolutional neural networks to the global weather prediction problem. For example, PeriodicPadding2D implements periodic boundary conditions for padding data in space prior to applying convolutions. These custom layers are worth a look.

Data generators

DLWP.model.generators contains several classes for generating data on-the-fly from a netCDF file produced by the DLWP preprocessing methods. These data generators can then be used in conjunction with a DWLP model instance's fit_generator method.

  • The DataGenerator class is the simplest generator class. It merely returns batches of data from a file containing "predictors" and "targets" variables already formatted for use in the DLWP model. Due to this simplicity, this is the optimal way to generate data directly from the disk when system memory is not sufficient to load the entire dataset. However, this comes at the cost of generating very large files on disk with redundant data (since the targets are merely a different time shift of the predictors).
  • The SeriesDataGenerator class is much more robust and memory efficient. It expects only a single "predictors" variable in the input file and generates predictor-target pairs on the fly for each batch of data. It also has the ability to prescribe external fields such as incoming solar radiation.
  • The SmartDataGenerator is deprecated in favor of SeriesDataGenerator.

Advanced forecast tools

The DLWP.model module also contains a TimeSeriesEstimator class. This class can be used to make robust forward forecasts where the data input does not necessarily match the data output of a model. And example usage of this class is in examples/validate.py, which performs basic routines to validate the forecast skill of DLWP models.

Other

The DLWP.util module contains useful utilities, including save_model and load_model for saving and loading DLWP models (and correctly dealing with multi-GPU models).

Owner
Kushal Shingote
Android Developer📱📱 iOS Apps📱📱 Swift | Xcode | SwiftUI iOS Swift development📱 Kotlin Application📱📱 iOS📱 Artificial Intelligence 💻 Data science
Kushal Shingote
Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Paper | Blog OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image gene

OFA Sys 1.4k Jan 08, 2023
QHack—the quantum machine learning hackathon

Official repo for QHack—the quantum machine learning hackathon

Xanadu 72 Dec 21, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

Xavier Tao 14 Dec 17, 2022
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022