PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Overview

Long Short-Term Transformer for Online Action Detection

Introduction

This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

network

Environment

  • The code is developed with CUDA 10.2, Python >= 3.7.7, PyTorch >= 1.7.1

    1. [Optional but recommended] create a new conda environment.

      conda create -n lstr python=3.7.7
      

      And activate the environment.

      conda activate lstr
      
    2. Install the requirements

      pip install -r requirements.txt
      

Data Preparation

  1. Download the THUMOS'14 and TVSeries datasets.

  2. Extract feature representations for video frames.

    • For ActivityNet pretrained features, we use the ResNet-50 model for the RGB and optical flow inputs. We recommend to use this checkpoint in MMAction2.

    • For Kinetics pretrained features, we use the ResNet-50 model for the RGB inputs. We recommend to use this checkpoint in MMAction2. We use the BN-Inception model for the optical flow inputs. We recommend to use the model here.

    Note: We compute the optical flow using DenseFlow.

  3. If you want to use our dataloaders, please make sure to put the files as the following structure:

    • THUMOS'14 dataset:

      $YOUR_PATH_TO_THUMOS_DATASET
      ├── rgb_kinetics_resnet50/
      |   ├── video_validation_0000051.npy (of size L x 2048)
      │   ├── ...
      ├── flow_kinetics_bninception/
      |   ├── video_validation_0000051.npy (of size L x 1024)
      |   ├── ...
      ├── target_perframe/
      |   ├── video_validation_0000051.npy (of size L x 22)
      |   ├── ...
      
    • TVSeries dataset:

      $YOUR_PATH_TO_TVSERIES_DATASET
      ├── rgb_kinetics_resnet50/
      |   ├── Breaking_Bad_ep1.npy (of size L x 2048)
      │   ├── ...
      ├── flow_kinetics_bninception/
      |   ├── Breaking_Bad_ep1.npy (of size L x 1024)
      |   ├── ...
      ├── target_perframe/
      |   ├── Breaking_Bad_ep1.npy (of size L x 31)
      |   ├── ...
      
  4. Create softlinks of datasets:

    cd long-short-term-transformer
    ln -s $YOUR_PATH_TO_THUMOS_DATASET data/THUMOS
    ln -s $YOUR_PATH_TO_TVSERIES_DATASET data/TVSeries
    

Training

Training LSTR with 512 seconds long-term memory and 8 seconds short-term memory requires less 3 GB GPU memory.

The commands are as follows.

cd long-short-term-transformer
# Training from scratch
python tools/train_net.py --config_file $PATH_TO_CONFIG_FILE --gpu $CUDA_VISIBLE_DEVICES
# Finetuning from a pretrained model
python tools/train_net.py --config_file $PATH_TO_CONFIG_FILE --gpu $CUDA_VISIBLE_DEVICES \
    MODEL.CHECKPOINT $PATH_TO_CHECKPOINT

Online Inference

There are three kinds of evaluation methods in our code.

  • First, you can use the config SOLVER.PHASES "['train', 'test']" during training. This process devides each test video into non-overlapping samples, and makes prediction on the all the frames in the short-term memory as if they were the latest frame. Note that this evaluation result is not the final performance, since (1) for most of the frames, their short-term memory is not fully utlized and (2) for simplicity, samples in the boundaries are mostly ignored.

    cd long-short-term-transformer
    # Inference along with training
    python tools/train_net.py --config_file $PATH_TO_CONFIG_FILE --gpu $CUDA_VISIBLE_DEVICES \
        SOLVER.PHASES "['train', 'test']"
    
  • Second, you could run the online inference in batch mode. This process evaluates all video frames by considering each of them as the latest frame and filling the long- and short-term memories by tracing back in time. Note that this evaluation result matches the numbers reported in the paper, but batch mode cannot be further accelerated as descibed in paper's Sec 3.6. On the other hand, this mode can run faster when you use a large batch size, and we recomand to use it for performance benchmarking.

    cd long-short-term-transformer
    # Online inference in batch mode
    python tools/test_net.py --config_file $PATH_TO_CONFIG_FILE --gpu $CUDA_VISIBLE_DEVICES \
        MODEL.CHECKPOINT $PATH_TO_CHECKPOINT MODEL.LSTR.INFERENCE_MODE batch
    
  • Third, you could run the online inference in stream mode. This process tests frame by frame along the entire video, from the beginning to the end. Note that this evaluation result matches the both LSTR's performance and runtime reported in the paper. It processes the entire video as LSTR is applied to real-world scenarios. However, currently it only supports to test one video at each time.

    cd long-short-term-transformer
    # Online inference in stream mode
    python tools/test_net.py --config_file $PATH_TO_CONFIG_FILE --gpu $CUDA_VISIBLE_DEVICES \
        MODEL.CHECKPOINT $PATH_TO_CHECKPOINT MODEL.LSTR.INFERENCE_MODE stream DATA.TEST_SESSION_SET "['$VIDEO_NAME']"
    

Evaluation

Evaluate LSTR's performance for online action detection using perframe mAP or mcAP.

cd long-short-term-transformer
python tools/eval/eval_perframe --pred_scores_file $PRED_SCORES_FILE

Evaluate LSTR's performance at different action stages by evaluating each decile (ten-percent interval) of the video frames separately.

cd long-short-term-transformer
python tools/eval/eval_perstage --pred_scores_file $PRED_SCORES_FILE

Citations

If you are using the data/code/model provided here in a publication, please cite our paper:

@inproceedings{xu2021long,
	title={Long Short-Term Transformer for Online Action Detection},
	author={Xu, Mingze and Xiong, Yuanjun and Chen, Hao and Li, Xinyu and Xia, Wei and Tu, Zhuowen and Soatto, Stefano},
	booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
	year={2021}
}

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

118 Dec 15, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
A PyTorch-based library for fast prototyping and sharing of deep neural network models.

A PyTorch-based library for fast prototyping and sharing of deep neural network models.

78 Jan 03, 2023
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad

Peru Bhardwaj 7 Sep 25, 2022