InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Overview

InsightFace: 2D and 3D Face Analysis Project

By Jia Guo and Jiankang Deng

Top News

2021-06-05: We launch a Masked Face Recognition Challenge & Workshop on ICCV 2021.

2021-05-15: We released an efficient high accuracy face detection approach called SCRFD.

2021-04-18: We achieved Rank-4th on NIST-FRVT 1:1, see leaderboard.

2021-03-13: We have released our official ArcFace PyTorch implementation, see here.

License

The code of InsightFace is released under the MIT License. There is no limitation for both academic and commercial usage.

The training data containing the annotation (and the models trained with these data) are available for non-commercial research purposes only.

Introduction

InsightFace is an open source 2D&3D deep face analysis toolbox, mainly based on MXNet and PyTorch.

The master branch works with MXNet 1.2 to 1.6, PyTorch 1.6+, with Python 3.x.

ArcFace Video Demo

ArcFace Demo

Please click the image to watch the Youtube video. For Bilibili users, click here.

Recent Update

2021-06-05: We launch a Masked Face Recognition Challenge & Workshop on ICCV 2021.

2021-05-15: We released an efficient high accuracy face detection approach called SCRFD.

2021-04-18: We achieved Rank-4th on NIST-FRVT 1:1, see leaderboard.

2021-03-13: We have released our official ArcFace PyTorch implementation, see here.

2021-03-09: Tips for training large-scale face recognition model, such as millions of IDs(classes).

2021-02-21: We provide a simple face mask renderer here which can be used as a data augmentation tool while training face recognition models.

2021-01-20: OneFlow based implementation of ArcFace and Partial-FC, here.

2020-10-13: A new training method and one large training set(360K IDs) were released here by DeepGlint.

2020-10-09: We opened a large scale recognition test benchmark IFRT

2020-08-01: We released lightweight facial landmark models with fast coordinate regression(106 points). See detail here.

2020-04-27: InsightFace pretrained models and MS1M-Arcface are now specified as the only external training dataset, for iQIYI iCartoonFace challenge, see detail here.

2020.02.21: Instant discussion group created on QQ with group-id: 711302608. For English developers, see install tutorial here.

2020.02.16: RetinaFace now can detect faces with mask, for anti-CoVID19, see detail here

2019.08.10: We achieved 2nd place at WIDER Face Detection Challenge 2019.

2019.05.30: Presentation at cvmart

2019.04.30: Our Face detector (RetinaFace) obtains state-of-the-art results on the WiderFace dataset.

2019.04.14: We will launch a Light-weight Face Recognition challenge/workshop on ICCV 2019.

2019.04.04: Arcface achieved state-of-the-art performance (7/109) on the NIST Face Recognition Vendor Test (FRVT) (1:1 verification) report (name: Imperial-000 and Imperial-001). Our solution is based on [MS1MV2+DeepGlintAsian, ResNet100, ArcFace loss].

2019.02.08: Please check https://github.com/deepinsight/insightface/tree/master/recognition/ArcFace for our parallel training code which can easily and efficiently support one million identities on a single machine (8* 1080ti).

2018.12.13: Inference acceleration TVM-Benchmark.

2018.10.28: Light-weight attribute model Gender-Age. About 1MB, 10ms on single CPU core. Gender accuracy 96% on validation set and 4.1 age MAE.

2018.10.16: We achieved state-of-the-art performance on Trillionpairs (name: nttstar) and IQIYI_VID (name: WitcheR).

Contents

Deep Face Recognition

Face Detection

Face Alignment

Citation

Contact

Deep Face Recognition

Introduction

In this module, we provide training data, network settings and loss designs for deep face recognition. The training data includes, but not limited to the cleaned MS1M, VGG2 and CASIA-Webface datasets, which were already packed in MXNet binary format. The network backbones include ResNet, MobilefaceNet, MobileNet, InceptionResNet_v2, DenseNet, etc.. The loss functions include Softmax, SphereFace, CosineFace, ArcFace, Sub-Center ArcFace and Triplet (Euclidean/Angular) Loss.

You can check the detail page of our work ArcFace(which accepted in CVPR-2019) and SubCenter-ArcFace(which accepted in ECCV-2020).

margin penalty for target logit

Our method, ArcFace, was initially described in an arXiv technical report. By using this module, you can simply achieve LFW 99.83%+ and Megaface 98%+ by a single model. This module can help researcher/engineer to develop deep face recognition algorithms quickly by only two steps: download the binary dataset and run the training script.

Training Data

All face images are aligned by ficial five landmarks and cropped to 112x112:

Please check Dataset-Zoo for detail information and dataset downloading.

  • Please check recognition/tools/face2rec2.py on how to build a binary face dataset. You can either choose MTCNN or RetinaFace to align the faces.

Train

  1. Install MXNet with GPU support (Python 3.X).
pip install mxnet-cu101 # which should match your installed cuda version
  1. Clone the InsightFace repository. We call the directory insightface as INSIGHTFACE_ROOT.
git clone --recursive https://github.com/deepinsight/insightface.git
  1. Download the training set (MS1M-Arcface) and place it in $INSIGHTFACE_ROOT/recognition/datasets/. Each training dataset includes at least following 6 files:
    faces_emore/
       train.idx
       train.rec
       property
       lfw.bin
       cfp_fp.bin
       agedb_30.bin

The first three files are the training dataset while the last three files are verification sets.

  1. Train deep face recognition models. In this part, we assume you are in the directory $INSIGHTFACE_ROOT/recognition/ArcFace/.

Place and edit config file:

cp sample_config.py config.py
vim config.py # edit dataset path etc..

We give some examples below. Our experiments were conducted on the Tesla P40 GPU.

(1). Train ArcFace with LResNet100E-IR.

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network r100 --loss arcface --dataset emore

It will output verification results of LFW, CFP-FP and AgeDB-30 every 2000 batches. You can check all options in config.py. This model can achieve LFW 99.83+ and MegaFace 98.3%+.

(2). Train CosineFace with LResNet50E-IR.

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network r50 --loss cosface --dataset emore

(3). Train Softmax with LMobileNet-GAP.

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network m1 --loss softmax --dataset emore

(4). Fine-turn the above Softmax model with Triplet loss.

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network m1 --loss triplet --lr 0.005 --pretrained ./models/m1-softmax-emore,1

(5). Training in model parallel acceleration.

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train_parall.py --network r100 --loss arcface --dataset emore
  1. Verification results.

LResNet100E-IR network trained on MS1M-Arcface dataset with ArcFace loss:

Method LFW(%) CFP-FP(%) AgeDB-30(%)
Ours 99.80+ 98.0+ 98.20+

Pretrained Models

You can use $INSIGHTFACE_ROOT/recognition/arcface_torch/eval/verification.py to test all the pre-trained models.

Please check Model-Zoo for more pretrained models.

Verification Results on Combined Margin

A combined margin method was proposed as a function of target logits value and original θ:

COM(θ) = cos(m_1*θ+m_2) - m_3

For training with m1=1.0, m2=0.3, m3=0.2, run following command:

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network r100 --loss combined --dataset emore

Results by using MS1M-IBUG(MS1M-V1)

Method m1 m2 m3 LFW CFP-FP AgeDB-30
W&F Norm Softmax 1 0 0 99.28 88.50 95.13
SphereFace 1.5 0 0 99.76 94.17 97.30
CosineFace 1 0 0.35 99.80 94.4 97.91
ArcFace 1 0.5 0 99.83 94.04 98.08
Combined Margin 1.2 0.4 0 99.80 94.08 98.05
Combined Margin 1.1 0 0.35 99.81 94.50 98.08
Combined Margin 1 0.3 0.2 99.83 94.51 98.13
Combined Margin 0.9 0.4 0.15 99.83 94.20 98.16

Test on MegaFace

Please check $INSIGHTFACE_ROOT/evaluation/megaface/ to evaluate the model accuracy on Megaface. All aligned images were already provided.

512-D Feature Embedding

In this part, we assume you are in the directory $INSIGHTFACE_ROOT/deploy/. The input face image should be generally centre cropped. We use RNet+ONet of MTCNN to further align the image before sending it to the feature embedding network.

  1. Prepare a pre-trained model.
  2. Put the model under $INSIGHTFACE_ROOT/models/. For example, $INSIGHTFACE_ROOT/models/model-r100-ii.
  3. Run the test script $INSIGHTFACE_ROOT/deploy/test.py.

For single cropped face image(112x112), total inference time is only 17ms on our testing server(Intel E5-2660 @ 2.00GHz, Tesla M40, LResNet34E-IR).

Third-party Re-implementation

Face Detection

RetinaFace

RetinaFace is a practical single-stage SOTA face detector which is initially introduced in arXiv technical report and then accepted by CVPR 2020. We provide training code, training dataset, pretrained models and evaluation scripts.

demoimg1

Please check RetinaFace for detail.

RetinaFaceAntiCov

RetinaFaceAntiCov is an experimental module to identify face boxes with masks. Please check RetinaFaceAntiCov for detail.

demoimg1

Face Alignment

DenseUNet

Please check the Menpo Benchmark and our Dense U-Net for detail. We also provide other network settings such as classic hourglass. You can find all of training code, training dataset and evaluation scripts there.

CoordinateReg

On the other hand, in contrast to heatmap based approaches, we provide some lightweight facial landmark models with fast coordinate regression. The input of these models is loose cropped face image while the output is the direct landmark coordinates. See detail at alignment-coordinateReg. Now only pretrained models available.

imagevis
videovis

Citation

If you find InsightFace useful in your research, please consider to cite the following related papers:

@inproceedings{deng2019retinaface,
title={RetinaFace: Single-stage Dense Face Localisation in the Wild},
author={Deng, Jiankang and Guo, Jia and Yuxiang, Zhou and Jinke Yu and Irene Kotsia and Zafeiriou, Stefanos},
booktitle={arxiv},
year={2019}
}

@inproceedings{guo2018stacked,
  title={Stacked Dense U-Nets with Dual Transformers for Robust Face Alignment},
  author={Guo, Jia and Deng, Jiankang and Xue, Niannan and Zafeiriou, Stefanos},
  booktitle={BMVC},
  year={2018}
}

@article{deng2018menpo,
  title={The Menpo benchmark for multi-pose 2D and 3D facial landmark localisation and tracking},
  author={Deng, Jiankang and Roussos, Anastasios and Chrysos, Grigorios and Ververas, Evangelos and Kotsia, Irene and Shen, Jie and Zafeiriou, Stefanos},
  journal={IJCV},
  year={2018}
}

@inproceedings{deng2018arcface,
title={ArcFace: Additive Angular Margin Loss for Deep Face Recognition},
author={Deng, Jiankang and Guo, Jia and Niannan, Xue and Zafeiriou, Stefanos},
booktitle={CVPR},
year={2019}
}

Contact

[Jia Guo](guojia[at]gmail.com)
[Jiankang Deng](jiankangdeng[at]gmail.com)
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
Utilities to bridge Canvas-generated course rosters with GitLab's API.

gitlab-canvas-utils A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository

Eugene Chou 5 Jun 08, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022