Compact Bilinear Pooling for PyTorch

Overview

Compact Bilinear Pooling for PyTorch.

This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch.

This version relies on the FFT implementation provided with PyTorch 0.4.0 onward. For older versions of PyTorch, use the tag v0.3.0.

Installation

Run the setup.py, for instance:

python setup.py install

Usage

class compact_bilinear_pooling.CompactBilinearPooling(input1_size, input2_size, output_size, h1 = None, s1 = None, h2 = None, s2 = None)

Basic usage:

from compact_bilinear_pooling import CountSketch, CompactBilinearPooling

input_size = 2048
output_size = 16000
mcb = CompactBilinearPooling(input_size, input_size, output_size).cuda()
x = torch.rand(4,input_size).cuda()
y = torch.rand(4,input_size).cuda()

z = mcb(x,y)

Test

A couple of test of the implementation of Compact Bilinear Pooling and its gradient can be run using:

python test.py

References

Comments
  • The value in ComplexMultiply_backward function

    The value in ComplexMultiply_backward function

    Hi @gdlg, thanks for this nice work. I'm confused about the backward procedure of complex multiplication. So I hope you can help me to figure it out.

    In forward,

    Z = XY = (Rx + i * Ix)(Ry + i * Iy) = (RxRy - IxIy) + i * (IxRy + RxIy) = Rz + i * Iz
    

    In backward, according the chain rule, it will has

    grad_(L/X) = grad_(L/Z) * grad(Z/X)
               = grad_Z * Y
               = (R_gz + i * I_gz)(Ry + i * Iy)
               = (R_gzRy - I_gzIy) + i * (I_gzRy + R_gzIy)
    

    So, why is this line implemented by using the value = 1 for real part and value = -1 for image part?

    Is there something wrong in my thoughts? Thanks.

    opened by KaiyuYue 8
  • The miss of Rfft

    The miss of Rfft

    When I run the test module, it indicates that the module of pytorch_fft of fft in autograd does not have attribute of Rfft. What version of pytorch_fft should I install to fit this code?

    opened by PeiqinZhuang 8
  • Save the model - TypeError: can't pickle Rfft objects

    Save the model - TypeError: can't pickle Rfft objects

    How do you save and load the model, I'm using torch.save, which cause the following error:

    File "x/anaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 135, in save
       return _with_file_like(f, "wb", lambda f: _save(obj, f, pickle_module, pickl                                                                                                                               e_protocol))
     File "x/anaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 117, in _with_file_like
       return body(f)
     File "xanaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 135, in <lambda>
       return _with_file_like(f, "wb", lambda f: _save(obj, f, pickle_module, pickl                                                                                                                               e_protocol))
     File "x/anaconda3/lib/python3.6/site-packages/tor                                                                                                                               ch/serialization.py", line 198, in _save
       pickler.dump(obj)
    TypeError: can't pickle Rfft objects
    
    
    opened by idansc 3
  • Multi GPU support

    Multi GPU support

    I modify

    class CompactBilinearPooling(nn.Module):   
         def forward(self, x, y):    
                return CompactBilinearPoolingFn.apply(self.sketch1.h, self.sketch1.s, self.sketch2.h, self.sketch2.s, self.output_size, x, y)
    

    to

    def forward(self, x):    
        x = x.permute(0, 2, 3, 1) #NCHW to NHWC   
        y = Variable(x.data.clone())    
        out = (CompactBilinearPoolingFn.apply(self.sketch1.h, self.sketch1.s, self.sketch2.h, self.sketch2.s, self.output_size, x, y)).permute(0,3,1,2) #to NCHW    
        out = nn.functional.adaptive_avg_pool2d(out, 1) # N,C,1,1   
        #add an element-wise signed square root layer and an instance-wise l2 normalization    
        out = (torch.sqrt(nn.functional.relu(out)) - torch.sqrt(nn.functional.relu(-out)))/torch.norm(out,2,1,True)   
        return out 
    

    This makes the compact pooling layer can be plugged to PyTorch CNNs more easily:

    model.avgpool = CompactBilinearPooling(input_C, input_C, bilinear['dim'])
    model.fc = nn.Linear(int(model.fc.in_features/input_C*bilinear['dim']), num_classes)

    However, when I run this using multiple GPUs, I got the following error:

    Traceback (most recent call last): File "train3_bilinear_pooling.py", line 400, in run() File "train3_bilinear_pooling.py", line 219, in run train(train_loader, model, criterion, optimizer, epoch) File "train3_bilinear_pooling.py", line 326, in train return _each_epoch('train', train_loader, model, criterion, optimizer, epoch) File "train3_bilinear_pooling.py", line 270, in _each_epoch output = model(input_var) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/modules/module.py", line 319, in call result = self.forward(*input, **kwargs) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 67, in forward replicas = self.replicate(self.module, self.device_ids[:len(inputs)]) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 72, in replicate return replicate(module, device_ids) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/nn/parallel/replicate.py", line 19, in replicate buffer_copies = comm.broadcast_coalesced(buffers, devices) File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/cuda/comm.py", line 55, in broadcast_coalesced for chunk in _take_tensors(tensors, buffer_size): File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/_utils.py", line 232, in _take_tensors if tensor.is_sparse: File "/home/member/fuwang/opt/anaconda/lib/python3.6/site-packages/torch/autograd/variable.py", line 68, in getattr return object.getattribute(self, name) AttributeError: 'Variable' object has no attribute 'is_sparse'

    Do you have any ideas?

    opened by YanWang2014 3
  • AssertionError: False is not true

    AssertionError: False is not true

    Hi, I am back again. When running the test.py, I got the following error File "test.py", line 69, in test_gradients self.assertTrue(torch.autograd.gradcheck(cbp, (x,y), eps=1)) AssertionError: False is not true

    What does this mean?

    opened by YanWang2014 2
  • Support for Pytorch 1.11?

    Support for Pytorch 1.11?

    Hi, torch.fft() and torch.irfft() are no more functions, those are modules. And there appears to be a lof of modification in the parameters. I am currently trying to combine the two types of features with compact bilinear pooling, do you know how to port this code to pytorch 1.11?

    opened by bhosalems 1
  • Training does not converge after joining compact bilinear layer

    Training does not converge after joining compact bilinear layer

    Source code: x = self.features(x) #[4,512,28,28] batch_size = x.size(0) x = (torch.bmm(x, torch.transpose(x, 1, 2)) / 28 ** 2).view(batch_size, -1) x = torch.nn.functional.normalize(torch.sign(x) * torch.sqrt(torch.abs(x) + 1e-10)) x = self.classifiers(x) return x my code: x = self.features(x) #[4,512,28,28] x = x.view(x.shape[0], x.shape[1], -1) #[4,512,784] x = x.permute(0, 2, 1) #[4,784,512] x = self.mcb(x,x) #[4,784,512] batch_size = x.size(0) x = x.sum(1) #对于二维来说,dim=0,对列求和;dim=1对行求和;在这里是三维所以是对列求和 x = torch.nn.functional.normalize(torch.sign(x) * torch.sqrt(torch.abs(x) + 1e-10)) x = self.classifiers(x) return x

    The training does not converge after modification. Why? Is it a problem with my code?

    opened by roseif 3
Releases(v0.4.0)
Owner
Grégoire Payen de La Garanderie
Grégoire Payen de La Garanderie
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Yoni Kasten 353 Dec 27, 2022
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch]

Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch] Abstract Snapshot compressive imaging (SCI) can rec

integirty 6 Nov 01, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
Augmented Traffic Control: A tool to simulate network conditions

Augmented Traffic Control Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/. Overview Augmented

Meta Archive 4.3k Jan 08, 2023
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022