Athena is an open-source implementation of end-to-end speech processing engine.

Related tags

Text Data & NLPathena
Overview

Athena

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing. To make speech processing available to everyone, we're also releasing example implementation and recipe on some opensource dataset for various tasks (Automatic Speech Recognition, Speech Synthesis, Voice Conversion, Speaker Recognition, etc).

All of our models are implemented in Tensorflow>=2.0.1. For ease of use, we provide Kaldi-free pythonic feature extractor with Athena_transform.

1) Table of Contents

2) Key Features

  • Hybrid Attention/CTC based end-to-end ASR
  • Speech-Transformer
  • Unsupervised pre-training
  • Multi-GPU training on one machine or across multiple machines with Horovod
  • WFST creation and WFST-based decoding
  • Deployment with Tensorflow C++

3) Installation

We provide the installation steps of tensorflow 2.3.1. The corresponding linux system environment is : cuda:10.1, ubuntu18.04. If your server installed docker, you can pull docker image : docker pull nvidia/cuda:10.1-devel-ubuntu18.04, and installing the python requirements: apt update && apt install python3 && apt install python3-venv && apt install python3-pip. We also provide a script include all installation steps:

# clone athena package,and run one step installation
git clone https://github.com/athena-team/athena.git
cd athena
bash one_installation.sh

If you want to use one_installation.sh, you can ignore the following steps!!!

3.1) Clone athena package

# In this step,you must install git( sudo apt-get update && sudo apt-get install git)
git clone https://github.com/athena-team/athena.git

3.2) Check system level installations

To check the base prerequisites for Athena

cd athena
bash check_source.sh

3.3) Creating a virtual environment [Optional]

This project has only been tested on Python 3. We highly recommend creating a virtual environment and installing the python requirements there.

# Setting up virtual environment
apt-get install python3-venv
python3 -m venv venv_athena
source venv_athena/bin/activate

3.4) Install tensorflow backend

For more information, you can checkout the tensorflow website.

# we highly recommend firstly update pip, if you find tensorflow download very slow, you can add "-i https://pypi.tuna.tsinghua.edu.cn/simple", eg: pip install tensorflow==2.3.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install --upgrade pip
pip install tensorflow==2.3.1

3.5) Install horovod for multiple-device training [Optional]

For multiple GPU/CPU training You have to install the horovod, you can find out more information from the horovod website. We provide a installation steps as reference,you can run the script in tools/.

cd athena
bash tools/install_horovod.sh

3.6) Install sph2pipe, spm, kenlm, sclite for ASR Tasks [Optional]

These packages are usually required for ASR tasks, we assume they have been installed when running the recipe for ASR tasks. You can find installation scripts of them in tools/, and a general installation script as reference:

cd athena
bash tools/install_tools_for_asr.sh

3.7) Install pydecoder for WFST decoding [Optional]

For WFST decoding You have to install pydecoder, installation guide for pydecoder can be found athena-decoder website

3.8) Install athena package

cd athena
pip install -r requirements.txt
python setup.py bdist_wheel sdist
python -m pip install --ignore-installed dist/athena-0.1.0*.whl
  • Once athena is successfully installed, you should do source tools/env.sh firstly before doing other things.

3.9) Test your installation

  • On a single cpu/gpu
source tools/env.sh
python examples/translate/spa-eng-example/prepare_data.py examples/translate/spa-eng-example/data/train.csv
python athena/main.py examples/translate/spa-eng-example/transformer.json
  • On multiple cpu/gpu in one machine (you should make sure your hovorod is successfully installed)
source tools/env.sh
python examples/translate/spa-eng-example/prepare_data.py examples/translate/spa-eng-example/data/train.csv
horovodrun -np 4 -H localhost:4 python athena/horovod_main.py examples/translate/spa-eng-example/transformer.json

Notes

  • If you see errors such as ERROR: Cannot uninstall 'wrapt' while installing TensorFlow, try updating it using command conda update wrapt. Same for similar dependencies such as entrypoints, llvmlite and so on.
  • You may want to make sure you have g++ version 7 or above to make sure you can successfully install TensorFlow.

4) Training

We will use ASR task TIMIT as an example to walk you through the whole training process. The recipe for this tutorial can be found at examples/asr/timit/run_101.sh.

4.1) Prepare the data

The data for TIMIT can be found here or here. First, we need to download the data and place it at examples/asr/timit/data/TIMIT. Then we will run the following scripts, which will do some data precessing and generate data csv for train, dev and test set of TIMIT.

mkdir -p examples/asr/timit/data
python examples/asr/timit/local/prepare_data.py examples/asr/timit/data/TIMIT examples/asr/timit/data

Below is an example csv we generated, it contains the absolute path of input audio, its length, its transcript and its speaker

wav_filename	wav_length_ms	transcript	speaker
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SI1456.WAV	3065	sil dh iy z eh er er vcl g ae sh vcl b ah vcl b ax sh epi m ey cl k hh ay l ix f ah ng cl sh epi en el th er m el vcl b eh r ix er z sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SX286.WAV	3283	sil ih n eh v r ih m ey vcl jh er cl k l ow v er l iy f cl t r ae f ix cl k s ah m cl t ay m z vcl g eh cl s vcl b ae cl t ah cl p sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SX196.WAV	1740	sil hh aw vcl d uw ao r sh cl ch er zh epi m ey cl p er l vcl d z sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SX106.WAV	2214	sil eh hh y uw vcl jh cl t ae cl p ix sh cl t r ix hh ah ng ix n er hh ah l w ey sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SX16.WAV	1926	sil ey r ow l el v w ay er l ey n ih er dh ax w ao l sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SI2086.WAV	2745	sil ae vcl b s el uw sh en f ao r hh ix z l ay hh sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SX376.WAV	2464	sil w ih m ix n m ey n eh v er vcl b ix cl k ah ng cl k ax m cl p l iy cl l iy cl k w el cl t ax m eh n sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SI826.WAV	3596	sil k ao sh en cl k en cl t ih n y uw s ix vcl m ih n ax sh cl t r ey sh en ix z epi n aa vcl r eh cl k m eh n d ix f ax l ae cl t ey dx ng cl k aw z sil	MCLM0

4.2) Setting the Configuration File

All of our training/ inference configurations are written in config.json. Below is an example configuration file with comments to help you understand.

{
  "batch_size":16,
  "num_epochs":20,
  "sorta_epoch":1,  # keep batches sorted for sorta_epoch, this helps with the convergence of models
  "ckpt":"examples/asr/timit/ckpts/mtl_transformer_ctc_sp/",
  "summary_dir":"examples/asr/timit/ckpts/mtl_transformer_ctc_sp/event",

  "solver_gpu":[0],
  "solver_config":{
    "clip_norm":100,  # clip gradients into a norm of 100
    "log_interval":10,  # print logs for log_interval steps
    "enable_tf_function":true  # enable tf_function to make training faster
  },

  "model":"mtl_transformer_ctc",  # the type of model this training uses, it's a multi-task transformer based model
  "num_classes": null,
  "pretrained_model": null,
  "model_config":{
    "model":"speech_transformer",
    "model_config":{
      "return_encoder_output":true,  # whether to return encoder only or encoder + decoder
      "num_filters":256,  # dimension of cnn filter
      "d_model":256,  # dimension of transformer
      "num_heads":8,  # heads of transformer
      "num_encoder_layers":9,
      "num_decoder_layers":3,
      "dff":1024,  # dimension of feed forward layer
      "rate":0.2,  # dropout rate for transformer
      "label_smoothing_rate":0.0,  # label smoothing rate for output logits
      "schedual_sampling_rate":1.0  # scheduled sampling rate for decoder
    },
    "mtl_weight":0.5
  },

  "inference_config":{
    "decoder_type":"beam_search_decoder",  # use beam search instead of argmax
    "beam_size":10,
    "ctc_weight":0.0,  # weight for ctc joint decoding
    "model_avg_num":10  # averaging checkpoints gives better results than using single checkpoint with best loss/ metrics
  },

  "optimizer":"warmup_adam",
  "optimizer_config":{  # configs for warmup optimizer
    "d_model":256,
    "warmup_steps":4000,
    "k":1
  },


  "dataset_builder": "speech_recognition_dataset",
  "num_data_threads": 1,
  "trainset_config":{
    "data_csv": "examples/asr/timit/data/train.csv",
    "audio_config":{"type":"Fbank", "filterbank_channel_count":40},  # config for feature extraction
    "cmvn_file":"examples/asr/timit/data/cmvn",  # mean and variance of FBank
    "text_config": {"type":"eng_vocab", "model":"examples/asr/timit/data/vocab"},  # vocab list
    "speed_permutation": [0.9, 1.0, 1.1],  # use speed perturbation to increase data diversitty
    "input_length_range":[10, 8000]  # range of audio input length
  },
  "devset_config":{
    "data_csv": "examples/asr/timit/data/dev.csv",
    "audio_config":{"type":"Fbank", "filterbank_channel_count":40},
    "cmvn_file":"examples/asr/timit/data/cmvn",
    "text_config": {"type":"eng_vocab", "model":"examples/asr/timit/data/vocab"},
    "input_length_range":[10, 8000]
  },
  "testset_config":{
    "data_csv": "examples/asr/timit/data/test.csv",
    "audio_config":{"type":"Fbank", "filterbank_channel_count":40},
    "cmvn_file":"examples/asr/timit/data/cmvn",
    "text_config": {"type":"eng_vocab", "model":"examples/asr/timit/data/vocab"}
  }
}

To get state-of-the-art models, we usually need to train for more epochs and use ctc joint decoding with language model. These are omitted for to make this tutorial easier to understand.

4.3) Data normalization

Data normalization is important for the convergence of neural network models. With the generated csv file, we will compute the cmvn file like this

python athena/cmvn_main.py examples/asr/$dataset_name/configs/mpc.json examples/asr/$dataset_name/data/all.csv

The generated cmvn files will be found at examples/asr/timit/data/cmvn.

4.4) Storage Features Offline

This step is optional. athena/tools/storage_features_offline.py will be a good choice to store the features of training data offline in advance if you want to save the time of data processing. In subsequent training, kaldiio can be used to read them directly. The specific operation is:

python athena/tools/storage_features_offline.py examples/asr/aishell/configs/storage_features_offline.json

Below is an example json configuration file to help you understand.

{
  "dataset_builder": "speech_recognition_dataset_kaldiio",
  "num_data_threads": 1,
  "trainset_config":{
    "data_scps_dir": "examples/asr/aishell/data/train",
    "data_csv": "examples/asr/aishell/data/train.csv",
    "audio_config": {"type":"Fbank", "filterbank_channel_count":40},
    "cmvn_file":"examples/asr/aishell/data/cmvn",
    "text_config": {"type":"vocab", "model":"examples/asr/aishell/data/vocab"},
    "input_length_range":[10, 8000],
    "speed_permutation": [0.9, 1.0, 1.1],
    "spectral_augmentation":{"warp_for_time": false, "num_t_mask": 2, "num_f_mask": 2, "max_t": 50, "max_f": 10, "max_w": 80},
    "apply_cmvn": true,
    "global_cmvn": true,
    "offline": true
  },  
  "devset_config":{
    "data_scps_dir": "examples/asr/aishell/data/dev",
    "data_csv": "examples/asr/aishell/data/dev.csv",
    "audio_config": {"type":"Fbank", "filterbank_channel_count":40},
    "cmvn_file":"examples/asr/aishell/data/cmvn",
    "text_config": {"type":"vocab", "model":"examples/asr/aishell/data/vocab"},
    "input_length_range":[10, 8000],
    "apply_cmvn": true,
    "global_cmvn": true,
    "offline": true
  },  
  "testset_config":{
    "data_scps_dir": "examples/asr/aishell/data/test",
    "data_csv": "examples/asr/aishell/data/test.csv",
    "audio_config": {"type":"Fbank", "filterbank_channel_count":40},
    "cmvn_file":"examples/asr/aishell/data/cmvn",
    "text_config": {"type":"vocab", "model":"examples/asr/aishell/data/vocab"},
    "apply_cmvn": true,
    "global_cmvn": true,
    "offline": true
  }
}

It should be noted that "offline": true. "apply_cmvn" indicates whether CMVN processing is required, and it is set to true by default. "global_cmvn" indicates whether CMVN processing is global, and it is set to true by default.

4.5) Train a Model

With all the above preparation done, training becomes straight-forward. athena/main.py is the entry point of the training module. Just run:

$ python athena/main.py examples/asr/timit/configs/mtl_transformer_sp_101.json

Please install Horovod and MPI at first, if you want to train model using multi-gpu. See the Horovod page for more instructions.

To run on a machine with 4 GPUs with Athena:

$ horovodrun -np 4 -H localhost:4 python athena/horovod_main.py examples/asr/timit/configs/mtl_transformer_sp_101.json

To run on 4 machines with 4 GPUs each with Athena:

$ horovodrun -np 16 -H server1:4,server2:4,server3:4,server4:4 python athena/horovod_main.py examples/asr/timit/configs/mtl_transformer_sp_101.json

4.6) Evaluate a model

All of our inference related scripts are merged into inference.py. athena/inference.py is the entry point of inference. Just run:

python athena/inference.py examples/asr/timit/configs/mtl_transformer_sp_101.json

A file named inference.log will be generated, which contains the log of decoding. inference.log is very important to get correct scoring results, and it will be overwrited if you run athena/inference.py multiple times.

4.7) Scoring

For scoring, you will need to install sclite first. The results of scoring can be found in score/score_map/inference.log.result.map.sys. The last few lines will look like this

|================================================================|
| Sum/Avg|  192   7215 | 84.4   11.4    4.3    3.2   18.8   99.5 |
|================================================================|
|  Mean  |  1.0   37.6 | 84.7   11.4    3.9    3.3   18.6   99.5 |
|  S.D.  |  0.0   11.7 |  7.7    6.3    4.2    3.6    9.0    7.2 |
| Median |  1.0   36.0 | 85.0   10.8    2.9    2.8   17.5  100.0 |
|----------------------------------------------------------------|

The line with Sum/Avg is usually what you should be looking for if you just want an overall PER result. In this case, 11.4 is the substitution error, 4.3 is the deletion error, 3.2 is the insertion error and 18.8 is the total PER.

7) Self-supervised speech representation learning

7.1) MPC

Masked Predictive Coding (MPC) uses masked reconstruction objective to perform predictive coding on transformer based models. It achieved significant improvements on various speech recognition datasets. For more information, please refer to following paper(s).

Improving Transformer-based Speech Recognition Using Unsupervised Pre-training

A Further Study of Unsupervised Pre-training for Transformer Based Speech Recognition

MPC models can be trained by running python athena/main.py examples/asr/*/configs/mpc.json. To use pretrained MPC model in ASR training, simply set the "pretrained_model" section in ASR json config to the checkpoint dir of MPC model and proceed training.

7.2) Speech SimCLR

Speech SimCLR is a new self-supervised objective for speech representation learning. During training, Speech SimCLR applies augmentation on raw speech and its spectrogram. Its objective is the combination of contrastive loss that maximizes agreement between differently augmented samples in the latent space and reconstruction loss of input representation. For more information, please refer to following paper(s).

Speech SimCLR: Combining Contrastive and Reconstruction Objective for Self-supervised Speech Representation Learning

For now, pre-training with Speech SimCLR is only supported for Librispeech. You can run it with python athena/main.py examples/asr/librispeech/configs/speech_simclr.json. For feature extraction, simply run python athena/inference.py examples/asr/librispeech/configs/speech_simclr.json. The pre-trained Speech SimCLR models can be found here.

8) Results

8.1) ASR

Language Model Name Training Data Hours of Speech Error Rate
English Transformer LibriSpeech Dataset 960 h 3.1% (WER)
Mandarin Transformer HKUST Dataset 151 h 22.75% (CER)
Mandarin Transformer AISHELL Dataset 178 h 6.6% (CER)

To compare with other published results, see wer_are_we.md.

9) Directory Structure

Below is the basic directory structure for Athena

|-- Athena
|   |-- data  # - root directory for input-related operations
|   |   |-- datasets  # custom datasets for ASR, TTS and pre-training
|   |-- layers  # some layers
|   |-- models  # some models
|   |-- tools # contains various tools, e.g. decoding tools
|   |-- transform # custom featureizer based on C++
|   |   |-- feats
|   |   |   |-- ops # c++ code on tensorflow ops
|   |-- utils # utils, e.g. checkpoit, learning_rate, metric, etc
|-- deploy  # deployment with Tensorflow C++
|   |-- include
|   |-- src
|-- docker
|-- docs  # docs
|-- examples  # example scripts for ASR, TTS, etc
|   |-- asr  # each subdirectory contains a data preparation scripts and a run script for the task
|   |   |-- aishell
|   |   |-- hkust
|   |   |-- librispeech
|-- tools  # need to source env.sh before training
Owner
Ke Technologies
Ke Technologies
Negative sampling for solving the unlabeled entity problem in NER. ICLR-2021 paper: Empirical Analysis of Unlabeled Entity Problem in Named Entity Recognition.

Negative Sampling for NER Unlabeled entity problem is prevalent in many NER scenarios (e.g., weakly supervised NER). Our paper in ICLR-2021 proposes u

Yangming Li 128 Dec 29, 2022
Plugin repository for Macast

Macast-plugins Plugin repository for Macast. How to use third-party player plugin Download Macast from GitHub Release. Download the plugin you want fr

109 Jan 04, 2023
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
Finding Label and Model Errors in Perception Data With Learned Observation Assertions

Finding Label and Model Errors in Perception Data With Learned Observation Assertions This is the project page for Finding Label and Model Errors in P

Stanford Future Data Systems 17 Oct 14, 2022
TPlinker for NER 中文/英文命名实体识别

本项目是参考 TPLinker 中HandshakingTagging思想,将TPLinker由原来的关系抽取(RE)模型修改为命名实体识别(NER)模型。

GodK 113 Dec 28, 2022
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

652 Jan 06, 2023
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

Justin Terry 32 Nov 09, 2021
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular intervals.It sends out the most recent news at random!

Nepali-news-notifier This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular in

Sachit Yadav 1 Feb 11, 2022
ACL'2021: Learning Dense Representations of Phrases at Scale

DensePhrases DensePhrases is an extractive phrase search tool based on your natural language inputs. From 5 million Wikipedia articles, it can search

Princeton Natural Language Processing 540 Dec 30, 2022
The FinQA dataset from paper: FinQA: A Dataset of Numerical Reasoning over Financial Data

Data and code for EMNLP 2021 paper "FinQA: A Dataset of Numerical Reasoning over Financial Data"

Zhiyu Chen 114 Dec 29, 2022
Beautiful visualizations of how language differs among document types.

Scattertext 0.1.0.0 A tool for finding distinguishing terms in corpora and displaying them in an interactive HTML scatter plot. Points corresponding t

Jason S. Kessler 2k Dec 27, 2022
German Text-To-Speech Engine using Tacotron and Griffin-Lim

jotts JoTTS is a German text-to-speech engine using tacotron and griffin-lim. The synthesizer model has been trained on my voice using Tacotron1. Due

padmalcom 6 Aug 28, 2022
Official code repository of the paper Linear Transformers Are Secretly Fast Weight Programmers.

Linear Transformers Are Secretly Fast Weight Programmers This repository contains the code accompanying the paper Linear Transformers Are Secretly Fas

Imanol Schlag 77 Dec 19, 2022
Client library to download and publish models and other files on the huggingface.co hub

huggingface_hub Client library to download and publish models and other files on the huggingface.co hub Do you have an open source ML library? We're l

Hugging Face 644 Jan 01, 2023
CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985 赛题描述详见:https://www.datafountain.cn/competitions/474 文件说明 data: 存放训练数据和测试数据以及预处理代码 model_bert.py: 网络模型结构定义 adv_train

shuo 40 Sep 28, 2022
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1

msg systems ag 169 Dec 21, 2022
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Ankur Dhuriya 10 Oct 13, 2022