This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

Overview

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition

Framework Architecture

Image

Requirements

  • Pytorch==1.0.1 or higher
  • opencv version: 4.1.0

Datasets

  • XMU:
    • Y. Huang, R. Wu, Y. Sun, W. Wang, and X. Ding, Vehicle logo recog775 nition system based on convolutional neural networks with a pretraining strategy, IEEE Transactions on Intelligent Transportation Systems 16 (4) (2015) 1951-1960.
    • https://xmu-smartdsp.github.io/VehicleLogoRecognition.html
  • HFUT-VL1 and HFUT-VL2:
    • Y. Yu, J. Wang, J. Lu, Y. Xie, and Z. Nie, Vehicle logo recognition based on overlapping enhanced patterns of oriented edge magnitudes, Computers & Electrical Engineering 71 (2018) 273–283.
    • https://github.com/HFUT-VL/HFUT-VL-dataset
  • CompCars:
    • L. Yang, P. Luo, C. C. Loy, and X. Tang, A large-scale car dataset for fine-grained categorization and verification, in: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 3973-3981.
    • http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/index.html
  • VLD-45:

VLF-net for classification (Vehicle logo feature extraction network)

  • Training with the classification pipeline

    • training XMU dataset
    python train.py --dataset_name XMU --framework Classification_Network
    
    • training HFUT-VL1 dataset
    python train.py --dataset_name HFUT_VL1 --framework Classification_Network
    
    • training HFUT-VL2 dataset
    python train.py --dataset_name HFUT_VL2 --framework Classification_Network
    
    • training CompCars dataset
    python train.py --dataset_name CompCars --framework Classification_Network
    
    • training VLD-45 dataset
    python train.py --dataset_name VLD-45 --framework Classification_Network
    
  • Testing with the classification pipeline

    • testing XMU dataset
    python test.py --dataset_name XMU --framework Classification_Network
    
    • testing HFUT-VL1 dataset
    python test.py --dataset_name HFUT_VL1 --framework Classification_Network
    
    • testing HFUT-VL2 dataset
    python test.py --dataset_name HFUT_VL2 --framework Classification_Network
    
    • testing CompCars dataset
    python test.py --dataset_name CompCars --framework Classification_Network
    
    • testing VLD-45 dataset
    python test.py --dataset_name VLD-45 --framework Classification_Network
    

VLF-net for category-consistent mask learning

  • Step 1:

    • Generation of the category-consistent masks. There are more details for the co-localization method PSOL.
    • Please note that we use the generated binary-masks directly instead of the predicted boxes.
  • Step 2:

    • After generating the category-consistent masks, we can further organize the training and testing data which are as below:
    root/
          test/
              dog/xxx.png
              dog/xxz.png
              cat/123.png
              cat/nsdf3.png
          train/
              dog/xxx.png
              dog/xxz.png
              cat/123.png
              cat/nsdf3.png
          mask/
              dog/xxx.png
              dog/xxz.png
              cat/123.png
              cat/nsdf3.png
    
    Note that each image has the corresponding generated category-consistent mask.
  • Step 3:

    • Now, you can training the model with the category-consistent mask learning framework

    • Training with the category-consistent deep network learning framework pipeline

      • training XMU dataset
      python train.py --dataset_name XMU --framework CCML_Network
      
      • training HFUT-VL1 dataset
      python train.py --dataset_name HFUT_VL1 --framework CCML_Network
      
      • training HFUT-VL2 dataset
      python train.py --dataset_name HFUT_VL2 --framework CCML_Network
      
      • training CompCars dataset
      python train.py --dataset_name CompCars --framework CCML_Network
      
      • training VLD-45 dataset
      python train.py --dataset_name VLD-45 --framework CCML_Network
      
    • Testing with the category-consistent deep network learning framework pipeline

      • testing XMU dataset
      python test.py --dataset_name XMU --framework CCML_Network
      
      • testing HFUT-VL1 dataset
      python test.py --dataset_name HFUT_VL1 --framework CCML_Network
      
      • testing HFUT-VL2 dataset
      python test.py --dataset_name HFUT_VL2 --framework CCML_Network
      
      • testing CompCars dataset
      python test.py --dataset_name CompCars --framework CCML_Network
      
      • testing VLD-45 dataset
      python test.py --dataset_name VLD-45 --framework CCML_Network
      

Experiments

Image

Image

Bibtex

  • If you find our code useful, please cite our paper:
    @article{LU2021,
    title = {Category-consistent deep network learning for accurate vehicle logo recognition},
      journal = {Neurocomputing},
      year = {2021},
      issn = {0925-2312},
      doi = {https://doi.org/10.1016/j.neucom.2021.08.030},
      url = {https://www.sciencedirect.com/science/article/pii/S0925231221012145},
      author = {Wanglong Lu and Hanli Zhao and Qi He and Hui Huang and Xiaogang Jin}
      }
    

Acknowledgements

Owner
Wanglong Lu
I am a Ph.D. student at Ubiquitous Computing and Machine Learning Research Lab (UCML), Memorial University of Newfoundland.
Wanglong Lu
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
SphereFace: Deep Hypersphere Embedding for Face Recognition

SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa

Weiyang Liu 1.5k Dec 29, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022