This is the dataset for testing the robustness of various VO/VIO methods

Overview

KAIST VIO dataset


This is the dataset for testing the robustness of various VO/VIO methods

You can download the whole dataset on KAIST VIO dataset



Index

1. Trajectories

2. Downloads

3. Dataset format

4. Setup



1. Trajectories


  • Four different trajectories: circle, infinity, square, and pure_rotation.
  • Each trajectory has three types of sequence: normal speed, fast speed, and rotation.
  • The pure rotation sequence has only normal speed, fast speed types

2. Downloads

You can download a single ROS bag file from the link below. (or whole dataset from KAIST VIO dataset)

Trajectory Type ROS bag download
circle normal
fast
rotation
link
link
link
infinity normal
fast
rotation
link
link
link
square normal
fast
rotation
link
link
link
rotation normal
fast
link
link



3. Dataset format


  • Each set of data is recorded as a ROS bag file.
  • Each data sequence contains the followings:
    • stereo infra images (w/ emitter turned off)
    • mono RGB image
    • IMU data (3-axes accelerometer, 3-axes gyroscopes)
    • 6-DOF Ground-Truth
  • ROS topic
    • Camera(30 Hz): "/camera/infra1(2)/image_rect_raw/compressed", "/camera/color/image_raw/compressed"
    • IMU(100 Hz): "/mavros/imu/data"
    • Ground-Truth(50 Hz): "/pose_transformed"
  • In the config directory
    • trans-mat.yaml: translational matrix between the origin of the Ground-Truth and the VI sensor unit.
      (the offset has already been applied to the bag data, and this YAML file has estimated offset values, just for reference. To benchmark your VO/VIO method more accurately, you can use your alignment method with other tools, like origin alignment or Umeyama alignment from evo)
    • imu-params.yaml: estimated noise parameters of Pixhawk 4 mini
    • cam-imu.yaml: Camera intrinsics, Camera-IMU extrinsics in kalibr format



4. Setup

- Hardware


                Fig.1 Lab Environment                                        Fig.2 UAV platform
  • VI sensor unit
    • camera: Intel Realsense D435i (640x480 for infra 1,2 & RGB images)
    • IMU: Pixhawk 4 mini
    • VI sensor unit was calibrated by using kalibr

  • Ground-Truth
    • OptiTrack PrimeX 13 motion capture system with six cameras was used
    • including 6-DOF motion information.

- Software (VO/VIO Algorithms): How to set each (publicly available) algorithm on the jetson board

VO/VIO Setup link
VINS-Mono link
ROVIO link
VINS-Fusion link
Stereo-MSCKF link
Kimera link

5. Citing

If you use the dataset in an academic context, please cite the following publication:

@article{jeon2021run,
title={Run Your Visual-Inertial Odometry on NVIDIA Jetson: Benchmark Tests on a Micro Aerial Vehicle},
author={Jeon, Jinwoo and Jung, Sungwook and Lee, Eungchang and Choi, Duckyu and Myung, Hyun},
journal={arXiv preprint arXiv:2103.01655},
year={2021}
}

6. Lisence

This datasets are released under the Creative Commons license (CC BY-NC-SA 3.0), which is free for non-commercial use (including research).

Owner
Jinwoo Jeon. KAIST Master degree candidate (Electrical Engineering)
Multimodal Temporal Context Network (MTCN)

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022
Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

Jungtaek Kim 74 Dec 05, 2022
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
Source code for paper: Knowledge Inheritance for Pre-trained Language Models

Knowledge-Inheritance Source code paper: Knowledge Inheritance for Pre-trained Language Models (preprint). The trained model parameters (in Fairseq fo

THUNLP 31 Nov 19, 2022
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023