Code voor mijn Master project omtrent VideoBERT

Overview

Code voor masterproef

Deze repository bevat de code voor het project van mijn masterproef omtrent VideoBERT. De code in deze repository is gebaseerd op code van https://github.com/huggingface/transformers.

Stap 1: Verzameling van de trainingsdata

In deze stap worden de videos en tekstannotaties verzameld uit de HowTo100M dataset. Het bestand stap1/ids.txt bevat alle ids van de 47470 videos die opgenomen werden in de trainingsdata. De annotaties kunnen worden geraadpleegd via https://www.rocq.inria.fr/cluster-willow/amiech/howto100m/.

Stap 2: Transformatie van de data

In deze stap worden de videos getransformeerd door de frame rate aan te passen naar 10 fps en aan de tekst interpunctie toe te voegen. Voor de tekst kunnen de getrainde modellen voor interpunctie worden geraadpleegd via https://drive.google.com/drive/folders/0B7BsN5f2F1fZQnFsbzJ3TWxxMms.

Stap 3: Extractie van de I3D kenmerken

De I3D kenmerken van de videos worden in deze stap geconstrueerd a.d.h.v. het I3D netwerk. De folder stap3/checkpoint bevat het originele Tensorflow checkpoint voor het I3D model.

Stap 4: Clustering van de I3D kenmerken

In deze stap worden de I3D kenmerken gegroeppeerd a.d.h.v. hïerarchische k-means. De beste resultaten werden bekomen wanneer k=12 en h=4. Het bestand dat de cluster centroids bevat kan worden teruggevonden op https://drive.google.com/file/d/1i1mDYTnY-3SIkehEDGT5ip_xj0wXIZOr/view?usp=sharing.

Stap 5: BERT omvormen tot VideoBERT

Het startpunt van VideoBERT is het BERT model. De state_dict van het getrainde BERT model kan in Pytorch aangepast worden om rekening te houden met de nieuwe woordenschat. Bovendien werd er ook een nieuwe klasse VideoBertForPreTraining geconstrueerd om de trainingsregimes en inputmodaliteiten te realiseren.

Stap 6: Training van het model

In de laatste stap werd het model getraind. Hierbij werd er zowel gëexperimenteerd met een model dat geen rekening houdt met de nieuwe voorgestelde aligneringstaak, alsook een model dat hier wel rekening mee houdt. De verwerkte trainingsdata kan worden geraadpleegd via https://drive.google.com/file/d/1nlXQuRdzpsF9V95D8zPOnZz5miOw3FpV/view?usp=sharing.

Evaluatie

Voor de evalutie van het model werd de YouCookII validatie dataset gebruikt. Het getrainde model behaald gelijkaardige resultaten als het oorspronkelijke model op een zero-shot classificatietaak. De lijsten voor de werkwoorden en zelfstandige naamwoorden kunnen worden teruggevonden in evaluatie/verbs.txt en evaluatie/nouns.txt. Het bestand met de ground-truth YouCookII linguïstieke en visuele zinnen samen met de werkwoorden en zelfstandige naamwoorden kan worden teruggevonden op https://drive.google.com/file/d/1hxbiS3mrQdJLkXsPo23dwl4m-dnCMcfV/view?usp=sharing.

Resultaten met Originele Template Zin

Evaluatie Resultaten Met Originele Template Zin

Resultaten met Aangepaste Template Zin

Evaluatie Resultaten Met Aangepaste Template Zin

Kwalitatieve Resultaten

Tekst-naar-Video taak

Tekst naar Video

Video-naar-Tekst taak

Tekst naar Video

Praktische problemen

Enkele belangrijke praktische problemen die ervaren werden tijdens het implementatieproces:

  • Enorme vereist opslagcapaciteit voor de trainingsdata (videos+tekst)
  • Zeer veel rekenkracht nodig (in termen van GPUs), in dit geval werd 1 Cloud Tesla V100 GPU gebruikt
  • Batch size groot genoeg houden door technieken zoals gradient accumulation

Belangrijke bevindingen

  • Performantie van het model blijkt redelijk afhankelijk te zijn van de gebruikte template zin, wat een mogelijke tekortkoming is
  • De multimodale aard van het model lijkt wel degelijk een semantische correspondentie te leren tussen tekst en video (vergeleken met bv. alleen tekst)

Bronnen

De belangrijkste bronnen zijn:

Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
Just a basic Telegram AI chat bot written in Python using Pyrogram.

Nikko ChatBot Just a basic Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher. A bot token. Installation $ https

ʀᴇxɪɴᴀᴢᴏʀ 2 Oct 21, 2022
मराठी भाषा वाचविण्याचा एक प्रयास. इंग्रजी ते मराठीचा शब्दकोश. An attempt to preserve the Marathi language. A lightweight and ad free English to Marathi thesaurus.

For English, scroll down मराठी शब्द मराठी भाषा वाचवण्यासाठी मी हा ओपन सोर्स प्रोजेक्ट सुरू केला आहे. माझ्या मते, आपली भाषा हळूहळू आणि कोणाचाही लक्षात

मुक्त स्त्रोत 20 Oct 11, 2022
Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library.

GI-Pi Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library. The SP0

Nick Bild 8 Dec 15, 2021
Kestrel Threat Hunting Language

Kestrel Threat Hunting Language What is Kestrel? Why we need it? How to hunt with XDR support? What is the science behind it? You can find all the ans

Open Cybersecurity Alliance 201 Dec 16, 2022
The aim of this task is to predict someone's English proficiency based on a text input.

English_proficiency_prediction_NLP The aim of this task is to predict someone's English proficiency based on a text input. Using the The NICT JLE Corp

1 Dec 13, 2021
Python utility library for compositing PDF documents with reportlab.

pdfdoc-py Python utility library for compositing PDF documents with reportlab. Installation The pdfdoc-py package can be installed directly from the s

Michael Gale 1 Jan 06, 2022
Unsupervised Language Model Pre-training for French

FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n

GETALP 212 Dec 10, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 08, 2023
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.

EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying

Alibaba 819 Jan 03, 2023
DiY Oxygen Concentrator based on the OxiKit

M19O2 DiY Oxygen Concentrator based on / inspired by the OxiKit, OpenOx, Marut, RepRap and Project Apollo platforms. About Read about the project on H

Maker's Asylum 62 Dec 22, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

🤗 Contributing to OpenSpeech 🤗 OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform ta

Openspeech TEAM 513 Jan 03, 2023
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing

Introduction Funnel-Transformer is a new self-attention model that gradually compresses the sequence of hidden states to a shorter one and hence reduc

GUOKUN LAI 197 Dec 11, 2022
An automated program that helps customers of Pizza Palour place their pizza orders

PIzza_Order_Assistant Introduction An automated program that helps customers of Pizza Palour place their pizza orders. The program uses voice commands

Tindi Sommers 1 Dec 26, 2021
I can help you convert your images to pdf file.

IMAGE TO PDF CONVERTER BOT Configs TOKEN - Get bot token from @BotFather API_ID - From my.telegram.org API_HASH - From my.telegram.org Deploy to Herok

MADUSHANKA 10 Dec 14, 2022
Pattern Matching in Python

Pattern Matching finalmente chega no Python 3.10. E daí? "Pattern matching", ou "correspondência de padrões" como é conhecido no Brasil. Algumas pesso

Fabricio Werneck 6 Feb 16, 2022
Binary LSTM model for text classification

Text Classification The purpose of this repository is to create a neural network model of NLP with deep learning for binary classification of texts re

Nikita Elenberger 1 Mar 11, 2022
Awesome-NLP-Research (ANLP)

Awesome-NLP-Research (ANLP)

Language, Information, and Learning at Yale 72 Dec 19, 2022
In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a model using HugginFace transformers framework.

Transformers are all you need In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a

Aymen Berriche 8 Apr 13, 2022
Random-Word-Generator - Generates meaningful words from dictionary with given no. of letters and words.

Random Word Generator Generates meaningful words from dictionary with given no. of letters and words. This might be useful for generating short links

Mohammed Rabil 1 Jan 01, 2022