MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

Overview

The collaboration platform for Machine Learning

MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.


MLReef

MLReef is a ML/DL development platform containing four main sections:

  • Data-Management - Fully versioned data hosting and processing infrastructure
  • Publishing code repositories - Containerized and versioned script repositories for immutable use in data pipelines
  • Experiment Manager - Experiment tracking, environments and results
  • ML-Ops - Pipelines & Orchestration solution for ML/DL jobs (K8s / Cloud / bare-metal)


To find out more about how MLReef can streamline your Machine Learning Development Lifecycle visit our homepage

Data Management

  • Host your data using git / git LFS repositories.
    • Work concurrently on data
    • Fully versioned or LFS version control
    • Full view on data processing and visualization history
  • Connect your external storage to MLReef and use your data directly in pipelines
  • Data set management (access, history, pipelines)

Publishing Code

Adding only parameter annotations to your code...

# example of parameter annotation for a image crop function
 @data_processor(
        name="Resnet50",
        author="MLReef",
        command="resnet50",
        type="ALGORITHM",
        description="CNN Model resnet50",
        visibility="PUBLIC",
        input_type="IMAGE",
        output_type="MODEL"
    )
    @parameter(name='input-path', type='str', required=True, defaultValue='train', description="input path")
    @parameter(name='output-path', type='str', required=True, defaultValue='output', description="output path")
    @parameter(name='height', type='int', required=True, defaultValue=224, description="height of cropped images in px")
    @parameter(name='width', type='int', required=True, defaultValue=224, description="width of cropped images in px")
    def init_params():
        pass

...and publishing your scripts gets you the following:

  • Containerization of your scripts
    • Always working scripts including easy hyperparameter access in pipelines
    • Execution environment (including specific packages & versions)
    • Hyper-parameters
      • ArgParser for command line parameters with currently used values
      • Explicit parameters dictionary
      • Input validation and guides
  • Multiple containers based on version and code branches

Experiment Manager

  • Complete experiment setup log
    • Full source control info including non-committed local changes
    • Execution environment (including specific packages & versions)
    • Hyper-parameters
  • Full experiment output automatic capture
    • Artifacts storage and standard-output logs
    • Performance metrics on individual experiments and comparative graphs for all experiments
    • Detailed view on logs and outputs generated
  • Extensive platform support and integrations

ML-Ops

  • Concurrent computing pipelining
  • Governance and control
    • Access and user management
    • Single permission management
    • Resource management
  • Model management

MLReef Architecture

The MLReef ML components within the ML life cycle:

  • Data Storage components based currently on Git and Git LFS.
  • Model development based on working modules (published by the community or your team), data management, data processing / data visualization / experiment pipeline on hosted or on-prem and model management.
  • ML-Ops orchestration, experiment and workflow reproducibility, and scalability.

Why MLReef?

MLReef is our solution to a problem we share with countless other researchers and developers in the machine learning/deep learning universe: Training production-grade deep learning models is a tangled process. MLReef tracks and controls the process by associating code version control, research projects, performance metrics, and model provenance.

We designed MLReef on best data science practices combined with the knowleged gained from DevOps and a deep focus on collaboration.

  • Use it on a daily basis to boost collaboration and visibility in your team
  • Create a job in the cloud from any code repository with a click of a button
  • Automate processes and create pipelines to collect your experimentation logs, outputs, and data
  • Make you ML life cycle transparent by cataloging it all on the MLReef platform

Getting Started as a Developer

To start developing, continue with the developer guide

Canonical source

The canonical source of MLReef where all development takes place is hosted on gitLab.com/mlreef/mlreef.

License

MIT License (see the License for more information)

Documentation, Community and Support

More information in the official documentation and on Youtube.

For examples and use cases, check these use cases or start the tutorial after registring:

If you have any questions: post on our Slack channel, or tag your questions on stackoverflow with 'mlreef' tag.

For feature requests or bug reports, please use GitLab issues.

Additionally, you can always reach out to us via [email protected]

Contributing

Merge Requests are always welcomed ❤️ See more details in the MLReef Contribution Guidelines.

Owner
MLReef
Your entire Machine Learning life cycle in one platform.
MLReef
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis

Horovod 12.9k Jan 07, 2023
Predict the output which should give a fair idea about the chances of admission for a student for a particular university

Predict the output which should give a fair idea about the chances of admission for a student for a particular university.

ArvindSandhu 1 Jan 11, 2022
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
The Fuzzy Labs guide to the universe of open source MLOps

Open Source MLOps This is the Fuzzy Labs guide to the universe of free and open source MLOps tools. Contents What is MLOps, anyway? Data version contr

Fuzzy Labs 352 Dec 29, 2022
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Rishabh Iyer 141 Nov 10, 2022
Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

Pinar Oner 7 Dec 18, 2021
Accelerating model creation and evaluation.

EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

Yusuf 0 Dec 06, 2021
AP1 Transcription Factor Binding Site Prediction

A machine learning project that predicted binding sites of AP1 transcription factor, using ChIP-Seq data and local DNA shape information.

1 Jan 21, 2022
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 06, 2022
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
A webpage that utilizes machine learning to extract sentiments from tweets.

Tweets_Classification_Webpage The goal of this project is to be able to predict what rating customers on social media platforms would give to products

Ayaz Nakhuda 1 Dec 30, 2021
A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

Nicholas Monath 31 Nov 03, 2022
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
Machine Learning e Data Science com Python

Machine Learning e Data Science com Python Arquivos do curso de Data Science e Machine Learning com Python na Udemy, cliqe aqui para acessá-lo. O prin

Renan Barbosa 1 Jan 27, 2022
Katana project is a template for ASAP 🚀 ML application deployment

Katana project is a FastAPI template for ASAP 🚀 ML API deployment

Mohammad Shahebaz 100 Dec 26, 2022
Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

FINRA 25 Dec 28, 2022
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022