Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

Overview

SPLASH: Semantic Parsing with Language Assistance from Humans

SPLASH is dataset for the task of semantic parse correction with natural language feedback in the context of text-to-SQL parsing.

Example

The task, dataset along with baseline results are presented in
Speak to your Parser: Interactive Text-to-SQL with Natural Language Feedback.
Ahmed Elgohary, Saghar Hosseini and Ahmed Hassan Awadallah.
ACL 2020.

Release

The train.json, dev.json and test.json contain the training, development and testing examples of SPLASH. In addition to that, we also release the 179 examples that are based on the EditSQL parser (Please, see section 6.3 in the paper for more details). The EditSQL examples are in editsql.json. SPLASH is distributed under the CC BY-SA 4.0 license.

Format

Each example contains the following fields:

db_id: Name of Spider database.

question: Question (Utterance) as provided in Spider.

predicted_parse: The predicted SQL parse by the relevant model.

predicted_parse_with_values: The predicted SQL with the values (annonomized in predicted_parse) inferred by a rule-based post-processor. Note that we still use Spider's evaluation measure which ignores the values, but inferring values for the predicted parse is essential for generating meaningful explanations.

predicted_parse_explanation: The generated natural language explanation of the predicted SQL.

feedback: Collected natural language feedback.

gold_parse: The gold parse of the given question as provided in Spider.

beam: The top 20 predictions with corresponding scores produced by Seq2Struct beam search.

Please, refer to the paper for more details.

Example

    {
        "db_id": "csu_1", 
        "question": "Which university is in Los Angeles county and opened after 1950?", 
        "predicted_parse": "SELECT T1.Campus FROM Campuses AS T1 JOIN faculty AS T2 ON T1.Id = T2.Campus WHERE T1.County = value AND T1.Year > value AND T2.Year > value", 
        "predicted_parse_with_values": "SELECT T1.Campus FROM Campuses AS T1 JOIN faculty AS T2 ON T1.Id = T2.Campus WHERE T1.County = \"Los Angeles\" AND T1.Year > 1950 AND T2.Year > 2002",
        "predicted_parse_explanation": [
            "Step 1: For each row in Campuses table, find the corresponding rows in faculty     
            table", 
            "Step 2: find Campuses's Campus of the results of step 1 whose County equals Los 
             Angeles and Campuses's Year greater than 1950 and faculty's Year greater than 2002"
        ],
        "feedback": "In step 2 Remove faculty 's year greater than 2002\".", 
        "gold_parse": "SELECT campus FROM campuses WHERE county  =  \"Los Angeles\" AND YEAR  >  
        1950", 
        "beam": [
            [
                "SELECT T1.Campus FROM Campuses AS T1 JOIN faculty AS T2 ON T1.Id = T2.Campus WHERE T1.County = value AND T2.Year > value AND T2.Year > value", 
                -1.5820374488830566
            ], 
            [
                "SELECT T1.County FROM Campuses AS T1 JOIN faculty AS T2 ON T1.Id = T2.Campus WHERE T1.Campus = value AND T2.Year > value AND T2.Year > value", 
                -2.0078020095825195
            ], 
            ..
  }          

Please, contact Ahmed Elgohary < [email protected] > for any questions/feedback.

Citation

@inproceedings{Elgohary20Speak,
Title = {Speak to your Parser: Interactive Text-to-SQL with Natural Language Feedback},
Author = {Ahmed Elgohary and Saghar Hosseini and Ahmed Hassan Awadallah},
Year = {2020},
Booktitle = {Association for Computational Linguistics},
}
Owner
Microsoft Research - Language and Information Technologies (MSR LIT)
Microsoft Research - Language and Information Technologies (MSR LIT)
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

PYPARSVD This implementation allows for a singular value decomposition which is: Distributed using MPI4Py Streaming - data can be shown in batches to

Romit Maulik 44 Dec 31, 2022
Neural Factorization of Shape and Reflectance Under An Unknown Illumination

NeRFactor [Paper] [Video] [Project] This is the authors' code release for: NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown I

Google 283 Jan 04, 2023
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 09, 2022
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google.

Google 116 Jan 05, 2023
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022