Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

Overview

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper]

DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization

Cheng Zhang, Zhaopeng Cui, Cai Chen, Shuaicheng Liu, Bing Zeng, Hujun Bao, Yinda Zhang

teaser pipeline

Introduction

This repo contains data generation, data preprocessing, training, testing, evaluation, visualization code of our ICCV 2021 paper.

Install

Install necessary tools and create conda environment (needs to install anaconda if not available):

sudo apt install xvfb ninja-build freeglut3-dev libglew-dev meshlab
conda env create -f environment.yaml
conda activate Pano3D
python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.7/index.html
python project.py build
  • When running python project.py build, the script will run external/build_gaps.sh which requires password for sudo privilege for apt-get install. Please make sure you are running with a user with sudo privilege. If not, please reach your administrator for installation of these libraries and comment out the corresponding lines then run python project.py build.
  • If you encounter /usr/bin/ld: cannot find -lGL problem when building GAPS, please follow this issue.

Since the dataloader loads large number of variables, before training, please follow this to raise the open file descriptor limits of your system. For example, to permanently change the setting, edit /etc/security/limits.conf with a text editor and add the following lines:

*         hard    nofile      500000
*         soft    nofile      500000
root      hard    nofile      500000
root      soft    nofile      500000

Demo

Download the pretrained checkpoints of detector, layout estimation network, and other modules. Then unzip the folder out into the root directory of current project. Since the given checkpoints are trained with current version of our code, which is a refactored version, the results are slightly better than those reported in our paper.

Please run the following command to predict on the given example in demo/input with our full model:

CUDA_VISIBLE_DEVICES=0 WANDB_MODE=dryrun python main.py configs/pano3d_igibson.yaml --model.scene_gcn.relation_adjust True --mode test

Or run without relation optimization:

CUDA_VISIBLE_DEVICES=0 WANDB_MODE=dryrun python main.py configs/pano3d_igibson.yaml --mode test

The results will be saved to out/pano3d/<demo_id>. If nothing goes wrong, you should get the following results:

rgb.png visual.png
det3d.jpg render.png

Data preparation

Our data is rendered with iGibson. Here, we follow their Installation guide to download iGibson dataset, then render and preprocess the data with our code.

  1. Download iGibson dataset with:

    python -m gibson2.utils.assets_utils --download_ig_dataset
  2. Render panorama with:

    python -m utils.render_igibson_scenes --renders 10 --random_yaw --random_obj --horizon_lo --world_lo

    The rendered dataset should be in data/igibson/.

  3. Make models watertight and render/crop single object image:

    python -m utils.preprocess_igibson_obj --skip_mgn

    The processed results should be in data/igibson_obj/.

  4. (Optional) Before proceeding to the training steps, you could visualize dataset ground-truth of data/igibson/ with:

    python -m utils.visualize_igibson

    Results ('visual.png' and 'render.png') should be saved to folder of each camera like data/igibson/Pomaria_0_int/00007.

Training and Testing

Preparation

  1. We use the pretrained weights of Implicit3DUnderstanding for fine-tuning Bdb3d Estimation Network (BEN) and LIEN+LDIF. Please download the pretrained checkpoint and unzip it into out/total3d/20110611514267/.

  2. We use wandb for logging and visualizing experiments. You can follow their quickstart guide to sign up for a free account and login on your machine with wandb login. The training and testing results will be uploaded to your project "deeppanocontext".

  3. Hint: The <XXX_id> in the commands bellow needs to be replaced with the XXX_id trained in the previous steps.

  4. Hint: In the steps bellow, when training or testing with main.py, you can override yaml configurations with command line parameter:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/layout_estimation_igibson.yaml --train.epochs 100

    This might be helpful when debugging or tuning hyper-parameters.

First Stage

2D Detector

  1. Train 2D detector (Mask RCNN) with:

    CUDA_VISIBLE_DEVICES=0 python train_detector.py

    The trained weights will be saved to out/detector/detector_mask_rcnn

  2. (Optional) When training 2D detector, you could visualize the training process with:

    tensorboard --logdir out/detector/detector_mask_rcnn --bind_all --port 6006
  3. (Optional) Evaluate with:

    CUDA_VISIBLE_DEVICES=0 python test_detector.py

    The results will be saved to out/detector/detector_mask_rcnn/evaluation_{train/test}. Alternatively, you can visualize the prediction results on test set with:

     CUDA_VISIBLE_DEVICES=0 python test_detector.py --visualize --split test

    The visualization will be saved to the folder where the model weights file is.

  4. (Optional) Visualize BFoV detection results:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/detector_2d_igibson.yaml --mode qtest --log.vis_step 1

    The visualization will be saved to out/detector/<detector_test_id>

Layout Estimation

Train layout estimation network (HorizonNet) with:

CUDA_VISIBLE_DEVICES=0 python main.py configs/layout_estimation_igibson.yaml

The checkpoint and visualization results will be saved to out/layout_estimation/<layout_estimation_id>/model_best.pth

Save First Stage Outputs

  1. Save predictions of 2D detector and LEN as dateset for stage 2 training:

    CUDA_VISIBLE_DEVICES=0 WANDB_MODE=dryrun python main.py configs/first_stage_igibson.yaml --mode qtest --weight out/layout_estimation/<layout_estimation_id>/model_best.pth

    The first stage outputs should be saved to data/igibson_stage1

  2. (Optional) Visualize stage 1 dataset with:

    python -m utils.visualize_igibson --dataset data/igibson_stage1 --skip_render

Second Stage

Object Reconstruction

Train object reconstruction network (LIEN+LDIF) with:

CUDA_VISIBLE_DEVICES=0 python main.py configs/ldif_igibson.yaml

The checkpoint and visualization results will be saved to out/ldif/<ldif_id>.

Bdb3D Estimation

Train bdb3d estimation network (BEN) with:

CUDA_VISIBLE_DEVICES=0 python main.py configs/bdb3d_estimation_igibson.yaml

The checkpoint and visualization results will be saved to out/bdb3d_estimation/<bdb3d_estimation_id>.

Relation SGCN

  1. Train Relation SGCN without relation branch:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/relation_scene_gcn_igibson.yaml --model.scene_gcn.output_relation False --model.scene_gcn.loss BaseLoss --weight out/bdb3d_estimation/<bdb3d_estimation_id>/model_best.pth out/ldif/<ldif_id>/model_best.pth

    The checkpoint and visualization results will be saved to out/relation_scene_gcn/<relation_sgcn_wo_rel_id>.

  2. Train Relation SGCN with relation branch:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/relation_scene_gcn_igibson.yaml --weight out/relation_scene_gcn/<relation_sgcn_wo_rel_id>/model_best.pth --train.epochs 20 

    The checkpoint and visualization results will be saved to out/relation_scene_gcn/<relation_sgcn_id>.

  3. Fine-tune Relation SGCN end-to-end with relation optimization:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/relation_scene_gcn_igibson.yaml --weight out/relation_scene_gcn/<relation_sgcn_id>/model_best.pth --model.scene_gcn.relation_adjust True --train.batch_size 1 --val.batch_size 1 --device.num_workers 2 --train.freeze shape_encoder shape_decoder --model.scene_gcn.loss_weights.bdb3d_proj 1.0 --model.scene_gcn.optimize_steps 20 --train.epochs 10

    The checkpoint and visualization results will be saved to out/relation_scene_gcn/<relation_sgcn_ro_id>.

Test Full Model

Run:

CUDA_VISIBLE_DEVICES=0 python main.py configs/relation_scene_gcn_igibson.yaml --weight out/relation_scene_gcn/<relation_sgcn_ro_id>/model_best.pth --log.path out/relation_scene_gcn --resume False --finetune True --model.scene_gcn.relation_adjust True --mode qtest --model.scene_gcn.optimize_steps 100

The visualization results will be saved to out/relation_scene_gcn/<relation_sgcn_ro_test_id>.

Citation

If you find our work and code helpful, please consider cite:

@misc{zhang2021deeppanocontext,
      title={DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization}, 
      author={Cheng Zhang and Zhaopeng Cui and Cai Chen and Shuaicheng Liu and Bing Zeng and Hujun Bao and Yinda Zhang},
      year={2021},
      eprint={2108.10743},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@InProceedings{Zhang_2021_CVPR,
    author    = {Zhang, Cheng and Cui, Zhaopeng and Zhang, Yinda and Zeng, Bing and Pollefeys, Marc and Liu, Shuaicheng},
    title     = {Holistic 3D Scene Understanding From a Single Image With Implicit Representation},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {8833-8842}
}

We thank the following great works:

  • Total3DUnderstanding for their well-structured code. We construct our network based on their well-structured code.
  • Coop for their dataset. We used their processed dataset with 2D detector prediction.
  • LDIF for their novel representation method. We ported their LDIF decoder from Tensorflow to PyTorch.
  • Graph R-CNN for their scene graph design. We adopted their GCN implemention to construct our SGCN.
  • Occupancy Networks for their modified version of mesh-fusion pipeline.

If you find them helpful, please cite:

@InProceedings{Nie_2020_CVPR,
author = {Nie, Yinyu and Han, Xiaoguang and Guo, Shihui and Zheng, Yujian and Chang, Jian and Zhang, Jian Jun},
title = {Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes From a Single Image},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}
@inproceedings{huang2018cooperative,
  title={Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose Estimation},
  author={Huang, Siyuan and Qi, Siyuan and Xiao, Yinxue and Zhu, Yixin and Wu, Ying Nian and Zhu, Song-Chun},
  booktitle={Advances in Neural Information Processing Systems},
  pages={206--217},
  year={2018}
}	
@inproceedings{genova2020local,
    title={Local Deep Implicit Functions for 3D Shape},
    author={Genova, Kyle and Cole, Forrester and Sud, Avneesh and Sarna, Aaron and Funkhouser, Thomas},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
    pages={4857--4866},
    year={2020}
}
@inproceedings{yang2018graph,
    title={Graph r-cnn for scene graph generation},
    author={Yang, Jianwei and Lu, Jiasen and Lee, Stefan and Batra, Dhruv and Parikh, Devi},
    booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
    pages={670--685},
    year={2018}
}
@inproceedings{mescheder2019occupancy,
  title={Occupancy networks: Learning 3d reconstruction in function space},
  author={Mescheder, Lars and Oechsle, Michael and Niemeyer, Michael and Nowozin, Sebastian and Geiger, Andreas},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={4460--4470},
  year={2019}
}
Owner
Cheng Zhang
Cheng Zhang of UESTC 电子科技大学 通信学院 章程
Cheng Zhang
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 03, 2022