Image-generation-baseline - MUGE Text To Image Generation Baseline

Overview

MUGE Text To Image Generation Baseline

Requirements and Installation

More details see fairseq. Briefly,

  • python == 3.6.4
  • pytorch == 1.7.1
  1. Installing fairseq and other requirements
git clone https://github.com/MUGE-2021/image-caption-baseline
cd muge_baseline/
pip install -r requirements.txt
cd fairseq/
pip install --editable .
  1. Downloading data and place to dataset/ directory, file structure is
text2image-baseline
    - dataset
        - ECommerce-T2I
            - T2I_train.img.tsv
            - T2I_train.text.tsv
            - ...

Getting Started

The model is a BART-like model with vqgan as a image tokenizer, please see models/t2i_baseline.py for detailed model structure.

Training

cd run_scripts/; bash train_t2i_vqgan.sh

Model training takes about 5 hours.

Inference

cd run_scripts/; bash generate_t2i_vqgan.sh

See results in results/ directory.

Reference

@inproceedings{M6,
  author    = {Junyang Lin and
               Rui Men and
               An Yang and
               Chang Zhou and
               Ming Ding and
               Yichang Zhang and
               Peng Wang and
               Ang Wang and
               Le Jiang and
               Xianyan Jia and
               Jie Zhang and
               Jianwei Zhang and
               Xu Zou and
               Zhikang Li and
               Xiaodong Deng and
               Jie Liu and
               Jinbao Xue and
               Huiling Zhou and
               Jianxin Ma and
               Jin Yu and
               Yong Li and
               Wei Lin and
               Jingren Zhou and
               Jie Tang and
               Hongxia Yang},
  title     = {{M6:} {A} Chinese Multimodal Pretrainer},
  year      = {2021},
  booktitle = {Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining},
  pages     = {3251–3261},
  numpages  = {11},
  location  = {Virtual Event, Singapore},
}

@article{M6-T,
  author    = {An Yang and
               Junyang Lin and
               Rui Men and
               Chang Zhou and
               Le Jiang and
               Xianyan Jia and
               Ang Wang and
               Jie Zhang and
               Jiamang Wang and
               Yong Li and
               Di Zhang and
               Wei Lin and
               Lin Qu and
               Jingren Zhou and
               Hongxia Yang},
  title     = {{M6-T:} Exploring Sparse Expert Models and Beyond},
  journal   = {CoRR},
  volume    = {abs/2105.15082},
  year      = {2021}
}
Apache Spark - A unified analytics engine for large-scale data processing

Apache Spark Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an op

The Apache Software Foundation 34.7k Jan 04, 2023
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
Torchyolo - Yolov3 ve Yolov4 modellerin Pytorch uygulamasıdır

TORCHYOLO : Yolo Modellerin Pytorch Uygulaması Yapılacaklar: Yolov3 model.py ve

Kadir Nar 3 Aug 22, 2022
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 25, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
A python3 tool to take a 360 degree survey of the RF spectrum (hamlib + rotctld + RTL-SDR/HackRF)

RF Light House (rflh) A python script to use a rotor and a SDR device (RTL-SDR or HackRF One) to measure the RF level around and get a data set and be

Pavel Milanes (CO7WT) 11 Dec 13, 2022
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022