Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Related tags

Deep LearningViSha
Overview

Triple-cooperative Video Shadow Detection

Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official link].
by Zhihao Chen1, Liang Wan1, Lei Zhu2, Jia Shen1, Huazhu Fu3, Wennan Liu4, and Jing Qin5
1College of Intelligence and Computing, Tianjin University
2Department of Applied Mathematics and Theoretical Physics, University of Cambridge
3Inception Institute of Artificial Intelligence, UAE
4Academy of Medical Engineering and Translational Medicine, Tianjin University
5The Hong Kong Polytechnic University

News: In 2021.4.7, We first release the code of TVSD and ViSha dataset.


Citation

@inproceedings{chen21TVSD,
     author = {Chen, Zhihao and Wan, Liang and Zhu, Lei and Shen, Jia and Fu, Huazhu and Liu, Wennan and Qin, Jing},
     title = {Triple-cooperative Video Shadow Detection},
     booktitle = {CVPR},
     year = {2021}
}

Dataset

ViSha dataset is available at ViSha Homepage

Requirement

  • Python 3.6
  • PyTorch 1.3.1
  • torchvision
  • numpy
  • tqdm
  • PIL
  • math
  • time
  • datatime
  • argparse
  • apex (alternative, fp16 for save memory and speedup)

Training

  1. Modify the data path on ./config.py
  2. Modify the pretrained backbone path on ./networks/resnext_modify/config.py
  3. Run by python train.py and model will be saved in ./models/TVSD

The pretrained ResNeXt model is ported from the official torch version, using the convertor provided by clcarwin. You can directly download the pretrained model ported by us.

Testing

  1. Modify the data path on ./config.py
  2. Make sure you have a snapshot in ./models/TVSD (Tips: You can download the trained model which is reported in our paper at BaiduNetdisk(pw: 8p5h) or Google Drive)
  3. Run by python infer.py to generate predicted masks
  4. Run by python evaluate.py to evaluate the generated results

Results in ViSha testing set

As mentioned in our paper, since there is no CNN-based method for video shadow detection, we make comparison against 12 state-of-the-art methods for relevant tasks, including BDRAR[1], DSD[2], MTMT[3] (single-image shadow detection), FPN[4], PSPNet[5] (single-image semantic segmentation), DSS[6], R^3 Net[7] (single-image saliency detection), PDBM[8], MAG[9] (video saliency detection), COSNet[10], FEELVOS[11], STM[12] (object object segmentation)
[1]L. Zhu, Z. Deng, X. Hu, C.-W. Fu, X. Xu, J. Qin, and P.-A. Heng. Bidirectional feature pyramid network with recurrent attention residual modules for shadow detection. In ECCV, pages 121–136, 2018.
[2]Q. Zheng, X. Qiao, Y. Cao, and R.W. Lau. Distraction-aware shadow detection. In CVPR, pages 5167–5176, 2019.
[3]Z. Chen, L. Zhu, L. Wan, S. Wang, W. Feng, and P.-A. Heng. A multi-task mean teacher for semi-supervised shadow detection. In CVPR, pages 5611–5620, 2020.
[4]T.-Y. Lin, P. Doll´ar, R. Girshick, K. He, B. Hariharan, and S.Belongie. Feature pyramid networks for object detection. In CVPR, pages 2117–2125, 2017.
[5]H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network. In CVPR, pages 2881–2890, 2017.
[6]Q. Hou, M. Cheng, X. Hu, A. Borji, Z. Tu, and P. Torr. Deeply supervised salient object detection with short connections. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(4):815–828, 2019.
[7]Z. Deng, X. Hu, L. Zhu, X. Xu, J. Qin, G. Han, and P.-A. Heng. R3net: Recurrent residual refinement network for saliency detection. In IJCAI, pages 684–690. AAAI Press, 2018.
[8]H. Song, W. Wang, S. Zhao, J. Shen, and K.-M. Lam. Pyramid dilated deeper convlstm for video salient object detection. In ECCV, pages 715–731, 2018.
[9]H. Li, G. Chen, G. Li, and Y. Yu. Motion guided attention for video salient object detection. In ICCV, pages 7274–7283, 2019.
[10]X. Lu, W. Wang, C. Ma, J. Shen, L. Shao, and F. Porikli. See more, know more: Unsupervised video object segmentation with co-attention siamese networks. In CVPR, pages 3623–3632, 2019.
[11]P. Voigtlaender, Y. Chai, F. Schroff, H. Adam, B. Leibe, and L.-C. Chen. Feelvos: Fast end-to-end embedding learning for video object segmentation. In CVPR, June 2019.
[12]S.W. Oh, J.-Y. Lee, N. Xu, and S.J. Kim. Video object segmentation using space-time memory networks. In ICCV, pages 9226–9235, 2019.

We evaluate those methods and our TVSD in ViSha testing set and release all results in BaiduNetdisk(pw: ritw) or Google Drive

Owner
Zhihao Chen
Zhihao Chen
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
the code for paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration"

EOW-Softmax This code is for the paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration". Accepted by ICCV21. Usage Commnd exa

Yezhen Wang 36 Dec 02, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021