Combining Diverse Feature Priors

Related tags

Deep Learningcopriors
Overview

Combining Diverse Feature Priors

This repository contains code for reproducing the results of our paper.

Paper: https://arxiv.org/abs/2110.08220

Blog Post: http://gradientscience.org/copriors/

Important files:

Scripts:
  pretrain_model.py: a script to pre-train the models on just the labeled data
  cotrain.py: a script to co-train pretrained model(s)
  sweep_final_models.py: a script to evaluate intermediate eras for a previously run cotrain
  
File Structure:
  datasets:
    datasets.py: the definition of the labeled/unlabeled/validation/test sets for our datasets
    transforms.py: describes the different prior transforms and spurious tinting
    co_training.py: contains the logic for model pre-training and co-training
   models:
    bagnet_custom.py: the architecture for the bagnets used in this paper
    model_utils.py: utilities for loading and building models

To generate the pre-trained priors, run:

python pretrain_model.py --dataset <DATASET NAME> --data-path <DATA PATH> --use_val --out-dir <OUTPUT PATH NAME> --arch <ARCHITECTURE NAME> --epochs 300 --lr <LR> --step_lr <STEP LR> --step_lr_gamma <STEP LR GAMMA> --additional-transform <TRANSFORM TYPE>

datasets: STLSub10, cifarsmallsub, celebaskewed 
data-path: use torchvision datasets from https://pytorch.org/vision/stable/index.html
use-val: determines whether to use validation or test set for tensorboard metrics
arch: vgg16_bn, bagnetcustom32 (bagnet for CIFAR), bagnetcustom96thin (bagnet for celeba/stl10)
lr, step-lr, step-lr-gamma are hyperparameters who's exact values can be found in our appendix.
additional-transform: which prior to use. possibilities are NONE, CANNY, SOBEL (use NONE and a bagnet architecture for the bagnet prior)

Add --spurious TINT to train with a tint (as in the tinted STL-10 experiments)

After generating the priors, the models can be self (include one prior directory) or co-trained (include both prior directories) by running:

python cotrain.py --dataset <DATASET NAME> --data-path <DATA PATH> --out-dir <OUTPUT PATH> --input-dirs <PRIOR DIRECTORY 1> --input-dirs <PRIOR DIRECTORY 2> --epochs_per_era 300 --fraction 0.05 --eras 20 --epochs 400 --arch vgg16_bn --additional-transform NONE --lr <LR> --step_lr <STEP LR> --step_lr_gamma <STEP LR GAMMA> --strategy STANDARD_CONSTANT 

This command will self/co-train the input prior directories, saving a checkpoint for each era, and then finally train a standard model on the pseudo-labels after the eras are complete.

To use the pure co-training strategy, add --pure
To use tinting as in the STL-10 tinting experiments
Owner
Madry Lab
Towards a Principled Science of Deep Learning
Madry Lab
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
CAUSE: Causality from AttribUtions on Sequence of Events

CAUSE: Causality from AttribUtions on Sequence of Events

Wei Zhang 21 Dec 01, 2022
Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.

Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels

Jennefer Maldonado 1 Dec 28, 2021
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

Zitong Yu 22 Nov 10, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
Sinkformers: Transformers with Doubly Stochastic Attention

Code for the paper : "Sinkformers: Transformers with Doubly Stochastic Attention" Paper You will find our paper here. Compat This package has been dev

Michael E. Sander 31 Dec 29, 2022