Sinkformers: Transformers with Doubly Stochastic Attention

Overview

Code for the paper : "Sinkformers: Transformers with Doubly Stochastic Attention"

Paper

You will find our paper here.

Compat

This package has been developed and tested with python3.8. It is therefore not guaranteed to work with earlier versions of python.

Install the repository on your machine

This package can easily be installed using pip, with the following command:

pip install numpy
pip install -e .

This will install the package and all its dependencies, listed in requirements.txt.

Each command has to be executed from the root folder sinkformers. Our code is distributed in the different repositories. For each repository, we modify the architectures proposed by replacing the SoftMax attention with a Sinkhorn attention.

Defining a toy Sinkformer for which attention matrices are doubly stochastic

For this example we use a Transformer from the nlp-tutorial library and define its Sinkformer counterpart with the argument "n_it", the number of iterations in Sinkhorn's algorithm.

cd nlp-tutorial/text-classification-transformer
import torch
from model import TransformerEncoder
n_it = 1
print('1 iteration in Sinkhorn corresponds to the original Transformer: ')
transformer = TransformerEncoder(vocab_size=1000, seq_len=512, n_layers=1,  n_heads=1, n_it=n_it, print_attention=True, pad_id=-1)
inp = torch.arange(512).repeat(5, 1)
out = transformer(inp)
n_it = 5
print('5 iteration in Sinkhorn gives a Sinkformer with perfectly doubly stochastic attention matrices: ')
sinkformer = TransformerEncoder(vocab_size=1000, seq_len=512, n_layers=1,  n_heads=1, n_it=n_it, print_attention=True, pad_id=-1)
inp = torch.arange(512).repeat(5, 1)
out = sinkformer(inp)

Then go back to the root:

cd ..
cd ..

Reproducing the experiments of the paper

Comparison of the different normalizations.

python plot_normalizations.py

ModelNet 40 classification. Code adapted from this repository. First, you need to preprocess the ModelNet40 dataset available here. Unzip it and save it under model_net_40/data. Then, preferably on multiple cpus, run

cd model_net_40
python to_h5.py
python formatting.py
cd ..
mv model_net_40/data/ModelNet40_cloud.h5 set_transformer/ModelNet40_cloud.h5
cd set_transformer
mkdir ../dataset
mv ModelNet40_cloud.h5 ../dataset/ModelNet40_cloud.h5
cd ..

Then you can train a Set Sinkformer (or Set Transformer) on ModelNet 40 with

cd set_transformer
python one_expe.py
cd ..

Arguments for one_expe.py can be accessed through

cd set_transformer
python one_expe.py --help
cd ..

Results are saved in the folder set_transformer/results. You can plot the learning curves using the script set_transformer/plot_results.py. The array iterations in the script must contains the different values for n_it used when training.

Sentiment Analysis. Code adapted from this repository. You can also train a Sinkformer for Sentiment Analysis on the IMDb Dataset with the following command (the IMDb Dataset is downloaded automatically).

cd nlp-tutorial/text-classification-transformer
python one_expe.py
cd ..
cd ..

Arguments for one_expe.py can be accessed through

cd nlp-tutorial/text-classification-transformer
python one_expe.py --help
cd ..

Results are saved in the folder nlp-tutorial/text-classification-transformer/results. You can plot the learning curves using the script nlp-tutorial/text-classification-transformer/plot_results.py. The array iterations in the script must contain the different values for "n_it" used when training.

ViT Cats and Dogs classification. Code adapted from this repository. First, you can download the data set here, unzip it and save the train and test repositories at sinkformers/vit-pytorch/examples/data. Then you can run

cd vit-pytorch
python one_expe.py
cd ..

Arguments for one_expe.py can be accessed through

cd vit-pytorch
python one_expe.py --help
cd ..

Results are saved in the folder vit-pytorch/results. You can plot the learning curves using the script vit-pytorch/plot_results.py. The array iterations in the script must contain the different values for "n_it" used when training.

ViT MNIST. The MNIST dataset will be downloaded automatically.

cd vit-pytorch
python one_expe_mnist.py
cd ..

Arguments for one_expe_mnist.py can be accessed through

cd vit-pytorch
python one_expe_mnist.py --help
cd ..

Especially, the argument "ps" is the patch size. Results are saved in the folder vit-pytorch/results_mnist. You can plot the learning curves using the script vit-pytorch/plot_results_mnist.py. The array iterations in the script must contain the different values for "n_it" used when training. The array patches_size in the script must contain the different values for "ps" used when training.

Cite

If you use this code in your project, please cite::

Michael E. Sander, Pierre Ablin, Mathieu Blondel, Gabriel Peyré
Sinkformers: Transformers with Doubly Stochastic Attention
arXiv preprint arXiv:2110.11773, 2021
https://arxiv.org/abs/2110.11773
Owner
Michael E. Sander
Michael E. Sander
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
Repository containing detailed experiments related to the paper "Memotion Analysis through the Lens of Joint Embedding".

Memotion Analysis Through The Lens Of Joint Embedding This repository contains the experiments conducted as described in the paper 'Memotion Analysis

Nethra Gunti 1 Mar 16, 2022
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Zhengxia Zou 1.5k Dec 28, 2022
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 — Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the

86 Dec 25, 2022