Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

Overview

How Tight Can PAC-Bayes be in the Small Data Regime?

This is the code to reproduce all experiments for the following paper:

@inproceedings{Foong:2021:How_Tight_Can_PAC-Bayes_Be,
    title = {How Tight Can {PAC}-{Bayes} Be in the Small Data Regime?},
    year = {2021},
    author = {Andrew Y. K. Foong and Wessel P. Bruinsma and David R. Burt and Richard E. Turner},
    booktitle = {Advances in Neural Information Processing Systems},
    volume = {35},
    eprint = {https://arxiv.org/abs/2106.03542},
}

Every experiment creates a folder in _experiments. The names of the files in those folders should be self-explanatory.

Installation

First, create and activate a virtual environment for Python 3.8.

virtualenv venv -p python3.8 
source venv/bin/activate

Then install an appropriate GPU-accelerated version of PyTorch.

Finally, install the requirements for the project.

pip install -e . 

You should now be able to run the below commands.

Generating Datasets

In order to generate the synthetic 1D datasets used, run these commands from inside classification_1d:

python gen_data.py --class_scheme balanced --num_context 30 --name 30-context --num_train_batches 5000 --num_test_batches 64
python gen_data.py --class_scheme balanced --num_context 60 --name 60-context --num_train_batches 5000 --num_test_batches 64

The generated datasets will be in pacbayes/_data_caches

Theory Experiments

See Figure 2 in Section 3 and Appendix G.

python theory_experiments.py --setting det1-1
python theory_experiments.py --setting det1-2
python theory_experiments.py --setting det2-1
python theory_experiments.py --setting det2-1

python theory_experiments.py --setting stoch1
python theory_experiments.py --setting stoch2
python theory_experiments.py --setting stoch3

python theory_experiments.py --setting random --random-seed 1 --random-better-bound maurer
python theory_experiments.py --setting random --random-seed 6 --random-better-bound catoni

GNP Classification Experiments

See Figure 3 and 4 in Section 4 and Appendices I and J. The numbers from the graphs can be found in eval_metrics_no_post_opt.txt (without post optimisation) eval_metrics_post_opt.txt (with post optimisation).

MODEL_NONDDP=maurer MODEL_DDP=maurer-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer MODEL_DDP=maurer-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=convex-nonseparable MODEL_DDP=convex-nonseparable-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=convex-nonseparable MODEL_DDP=convex-nonseparable-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-optimistic MODEL_DDP=maurer-optimistic-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-optimistic MODEL_DDP=maurer-optimistic-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-inv MODEL_DDP=maurer-inv-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-inv MODEL_DDP=maurer-inv-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-inv-optimistic MODEL_DDP=maurer-inv-optimistic-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-inv-optimistic MODEL_DDP=maurer-inv-optimistic-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh

MODEL_NONDDP=maurer MODEL_DDP=maurer-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer MODEL_DDP=maurer-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=convex-nonseparable MODEL_DDP=convex-nonseparable-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=convex-nonseparable MODEL_DDP=convex-nonseparable-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-optimistic MODEL_DDP=maurer-optimistic-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-optimistic MODEL_DDP=maurer-optimistic-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-inv MODEL_DDP=maurer-inv-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-inv MODEL_DDP=maurer-inv-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-inv-optimistic MODEL_DDP=maurer-inv-optimistic-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-inv-optimistic MODEL_DDP=maurer-inv-optimistic-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh

MLP Classification Experiments

See Appendix J. The numbers from the graphs can be found in eval_metrics_no_post_opt.txt (without post optimisation) eval_metrics_post_opt.txt (with post optimisation).

MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=30 ./run_MLP.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=30 ./run_MLP.sh

MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=60 ./run_MLP.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=60 ./run_MLP.sh
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
Portfolio analytics for quants, written in Python

QuantStats: Portfolio analytics for quants QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to unde

Ran Aroussi 2.7k Jan 08, 2023
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
REBEL: Relation Extraction By End-to-end Language generation

REBEL: Relation Extraction By End-to-end Language generation This is the repository for the Findings of EMNLP 2021 paper REBEL: Relation Extraction By

Babelscape 222 Jan 06, 2023
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto

Guillaume Chevalier 103 Jul 22, 2022
Easy-to-use micro-wrappers for Gym and PettingZoo based RL Environments

SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers'). We supp

Farama Foundation 357 Jan 06, 2023