DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Overview

Dimensionality Reduction + Clustering + Unsupervised Score Metrics

  1. Introduction
  2. Installation
  3. Usage
  4. Hyperparameters matters
  5. BayesSearch example

1. Introduction

DimReductionClustering is a sklearn estimator allowing to reduce the dimension of your data and then to apply an unsupervised clustering algorithm. The quality of the cluster can be done according to different metrics. The steps of the pipeline are the following:

  • Perform a dimension reduction of the data using UMAP
  • Numerically find the best epsilon parameter for DBSCAN
  • Perform a density based clustering methods : DBSCAN
  • Estimate cluster quality using silhouette score or DBCV

2. Installation

Use the package manager pip to install DimReductionClustering like below. Rerun this command to check for and install updates .

!pip install umap-learn
!pip install git+https://github.com/christopherjenness/DBCV.git

!pip install git+https://github.com/MathieuCayssol/DimReductionClustering.git

3. Usage

Example on mnist data.

  • Import the data
from sklearn.model_selection import train_test_split
from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1]*x_train.shape[1]))
X, X_test, Y, Y_test = train_test_split(x_train, y_train, stratify=y_train, test_size=0.9)
  • Instanciation + fit the model (same interface as a sklearn estimators)
model = DimReductionClustering(n_components=2, min_dist=0.000001, score_metric='silhouette', knn_topk=8, min_pts=4).fit(X)

Return the epsilon using elbow method :

  • Show the 2D plot :
model.display_plotly()

  • Get the score (Silhouette coefficient here)
model.score()

4. Hyperparameters matters

4.1 UMAP (dim reduction)

  • n_neighbors (global/local tradeoff) (default:15 ; 2-1/4 of data)

    → low value (glue small chain, more local)

    → high value (glue big chain, more global)

  • min_dist (0 to 0.99) the minimum distance apart that points are allowed to be in the low dimensional representation. This means that low values of min_dist will result in clumpier embeddings. This can be useful if you are interested in clustering, or in finer topological structure. Larger values of min_dist will prevent UMAP from packing points together and will focus on the preservation of the broad topological structure instead.

  • n_components low dimensional space. 2 or 3

  • metric (’euclidian’ by default). For NLP, good idea to choose ‘cosine’ as infrequent/frequent words will have different magnitude.

4.2 DBSCAN (clustering)

  • min_pts MinPts ≥ 3. Basic rule : = 2 * Dimension (4 for 2D and 6 for 3D). Higher for noisy data.

  • Epsilon The maximum distance between two samples for one to be considered as in the neighborhood of the other. k-distance graph with k nearest neighbor. Sort result by descending order. Find elbow using orthogonal projection on a line between first and last point of the graph. y-coordinate of max(d((x,y),Proj(x,y))) is the optimal epsilon. Click here to know more about elbow method

! There is no Epsilon hyperparameters in the implementation, only k-th neighbor for KNN.

  • knn_topk k-th Nearest Neighbors. Between 3 and 20.

4.3 Score metric

5. BayesSearch example

!pip install scikit-optimize

from skopt.space import Integer
from skopt.space import Real
from skopt.space import Categorical
from skopt.utils import use_named_args
from skopt import BayesSearchCV

search_space = list()
#UMAP Hyperparameters
search_space.append(Integer(5, 200, name='n_neighbors', prior='uniform'))
search_space.append(Real(0.0000001, 0.2, name='min_dist', prior='uniform'))
#Search epsilon with KNN Hyperparameters
search_space.append(Integer(3, 20, name='knn_topk', prior='uniform'))
#DBSCAN Hyperparameters
search_space.append(Integer(4, 15, name='min_pts', prior='uniform'))


params = {search_space[i].name : search_space[i] for i in range((len(search_space)))}

train_indices = [i for i in range(X.shape[0])]  # indices for training
test_indices = [i for i in range(X.shape[0])]  # indices for testing

cv = [(train_indices, test_indices)]

clf = BayesSearchCV(estimator=DimReductionClustering(), search_spaces=params, n_jobs=-1, cv=cv)

clf.fit(X)

clf.best_params_

clf.best_score_
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
Predict and time series avocado hass

RECOMMENDER SYSTEM MARKETING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU 1. Giới thiệu - Tiki là một hệ sinh thái thương mại "all in one", trong đó có tiki.vn, là

hieulmsc 3 Jan 10, 2022
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Reference implementation for Structured Prediction with Deep Value Networks

Deep Value Network (DVN) This code is a python reference implementation of DVNs introduced in Deep Value Networks Learn to Evaluate and Iteratively Re

Michael Gygli 55 Feb 02, 2022
Pytorch implementation of our paper accepted by NeurIPS 2021 -- Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) (Link) Overview Prerequisites Linu

Shaojie Li 34 Mar 31, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022