PIXIE: Collaborative Regression of Expressive Bodies

Related tags

Deep LearningPIXIE
Overview

PIXIE: Collaborative Regression of Expressive Bodies

[Project Page]

This is the official Pytorch implementation of PIXIE.

PIXIE reconstructs an expressive body with detailed face shape and hand articulation from a single image. PIXIE does this by regressing the body, face and hands directly from image pixels using a neural network that includes a novel moderator, which attends to add weights information about the different body parts. Unlike prior work, PIXIE estimates bodies with a gender-appropriate shape but does so in a gender neutral shape space to accommodate non-binary shapes. Please refer to the Paper for more details.

The main features of PIXIE are:

  • Expressive body estimation: Given a single image, PIXIE reconstructs the 3D body shape and pose, hand articulation and facial expression as SMPL-X parameters
  • Facial details: PIXIE extracts detailed face shape, including wrinkles, using DECA
  • Facial texture: PIXIE also returns a estimate of the albedo of the subject
  • Animation: The estimated body can be re-posed and animated
  • Robust: Tested on full-body images in unconstrained conditions. The moderation strategy prevents unnatural poses. Overall, our method is robust to: various poses, illumination conditions and occlusions
  • Accurate: state-of-the-art expressive body reconstruction
  • Fast: this is a direct regression method (pixels in, SMPL-X out)

Getting started

Please follow the installation instructions to install all necessary packages and download the data.

Demo

Expressive 3D body reconstruction

python demos/demo_fit_body.py --saveObj True 

This return the estimated 3D body geometry with texture, in the form of an obj file, and render it from multiple viewpoints. If you set the optional --deca_path argument then the result will also contain facial details from DECA, provided that the face moderator is confident enough. Please run python demos/demo_fit_body.py --help for a more detailed description of the various available options.

input body image, estimated 3D body, with facial details, with texture, different views

3D face reconstruction

python demos/demo_fit_face.py --saveObj True --showBody True

Note that, given only a face image, our method still regresses the full SMPL-X parameters, producing a body mesh (as shown in the rightmost image). Futher, note how different face shapes produce different body shapes. The face tells us a lot about the body.

input face image, estimated face, with facial details, with texture, whole body in T-pose

3D hand reconstruction

python demos/demo_fit_hand.py --saveObj True

We do not provide support for hand detection, please make sure that to pass hand-only images and flip horizontally all left hands.

input hand image, estimated hand, with texture(fixed texture).

Animation

python demos/demo_animate_body.py 

Bodies estimated by PIXIE are easily animated. For example, we can estimate the body from one image and animate with the poses regressed from a different image sequence.

The visualization contains the input image, the predicted expressive 3D body, the animation result, the reference video and its corresponding reconstruction. For the latter, the color of the hands and head represents the confidence of the corresponding moderators. A lighter color means that PIXIE trusts more the information of the body image rather than the parts, which can happen when a person is facing away from the camera for example.

Notes

You can find more details on our method, as well as a discussion of the limitations of PIXIE here.

Citation

If you find our work useful to your research, please consider citing:

@inproceedings{PIXIE:2021,
      title={Collaborative Regression of Expressive Bodies using Moderation}, 
      author={Yao Feng and Vasileios Choutas and Timo Bolkart and Dimitrios Tzionas and Michael J. Black},
      booktitle={International Conference on 3D Vision (3DV)},
      year={2021}
}

License

This code and model are available for non-commercial scientific research purposes as defined in the LICENSE file. By downloading and using the code and model you agree to the terms in the LICENSE.

Acknowledgments

For functions or scripts that are based on external sources, we acknowledge the origin individually in each file.
Here are some great resources we benefit from:

We would also like to thank the authors of other public body regression methods, which allow us to easily perform quantitative and qualitative comparisons:
HMR, SPIN, frankmocap

Last but not least, we thank Victoria Fernández Abrevaya, Yinghao Huang and Radek Danecek for their helpful comments and proof reading, and Yuliang Xiu for his help in capturing demo sequences. This research was partially supported by the Max Planck ETH Center for Learning Systems. Some of the images used in the qualitative examples come from pexels.com.

Contact

For questions, please contact [email protected].
For commercial licensing (and all related questions for business applications), please contact [email protected].

Owner
Yao Feng
Yao Feng
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
Official implementation of Few-Shot and Continual Learning with Attentive Independent Mechanisms

Few-Shot and Continual Learning with Attentive Independent Mechanisms This repository is the official implementation of Few-Shot and Continual Learnin

Chikan_Huang 25 Dec 08, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
Contains code for Deep Kernelized Dense Geometric Matching

DKM - Deep Kernelized Dense Geometric Matching Contains code for Deep Kernelized Dense Geometric Matching We provide pretrained models and code for ev

Johan Edstedt 83 Dec 23, 2022
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.

EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos. In this project, we provide the basic code for fitt

ZJU3DV 2.2k Jan 05, 2023