Open-AI's DALL-E for large scale training in mesh-tensorflow.

Overview

DALL-E in Mesh-Tensorflow [WIP]

Open-AI's DALL-E in Mesh-Tensorflow.

If this is similarly efficient to GPT-Neo, this repo should be able to train models up to, and larger than, the size of Open-AI's DALL-E (12B params).

No pretrained models... Yet.

Thanks to Ben Wang for the tf vae implementation as well as getting the mtf version working, and Aran Komatsuzaki for help building the mtf VAE and input pipeline.

Setup

git clone https://github.com/EleutherAI/GPTNeo
cd GPTNeo
pip3 install -r requirements.txt

Training Setup

Runs on TPUs, untested on GPUs but should work in theory. The example configs are designed to run on a TPU v3-32 pod.

To set up TPUs, sign up for Google Cloud Platform, and create a storage bucket.

Create your VM through a google shell (https://ssh.cloud.google.com/) with ctpu up --vm-only so that it can connect to your Google bucket and TPUs and setup the repo as above.

VAE pretraining

DALLE needs a pretrained VAE to compress images to tokens. To run the VAE pretraining, adjust the params in configs/vae_example.json to a glob path pointing to a dataset of jpgs, and adjust image size to the appropriate size.

  "dataset": {
    "train_path": "gs://neo-datasets/CIFAR-10-images/train/**/*.jpg",
    "eval_path": "gs://neo-datasets/CIFAR-10-images/test/**/*.jpg",
    "image_size": 32
  }

Once this is all set up, create your TPU, then run:

python train_vae_tf.py --tpu your_tpu_name --model vae_example

The training logs image tensors and loss values, to check progress, you can run:

tensorboard --logdir your_model_dir

Dataset Creation [DALL-E]

Once the VAE is pretrained, you can move on to DALL-E.

Currently we are training on a dummy dataset. A public, large-scale dataset for DALL-E is in the works. In the meantime, to generate some dummy data, run:

python src/data/create_tfrecords.py

This should download CIFAR-10, and generate some random captions to act as text inputs.

Custom datasets should be formatted in a folder, with a jsonl file in the root folder containing caption data and paths to the respective images, as follows:

Folder structure:

        data_folder
            jsonl_file
            folder_1
                img1
                img2
                ...
            folder_2
                img1
                img2
                ...
            ...

jsonl structure:
    {"image_path": folder_1/img1, "caption": "some words"}
    {"image_path": folder_2/img2, "caption": "more words"}
    ...

you can then use the create_paired_dataset function in src/data/create_tfrecords.py to encode the dataset into tfrecords for use in training.

Once the dataset is created, copy it over to your bucket with gsutil:

gsutil cp -r DALLE-tfrecords gs://neo-datasets/

And finally, run training with

python train_dalle.py --tpu your_tpu_name --model dalle_example

Config Guide

VAE:

{
  "model_type": "vae",
  "dataset": {
    "train_path": "gs://neo-datasets/CIFAR-10-images/train/**/*.jpg", # glob path to training images
    "eval_path": "gs://neo-datasets/CIFAR-10-images/test/**/*.jpg", # glob path to eval images
    "image_size": 32 # size of images (all images will be cropped / padded to this size)
  },
  "train_batch_size": 32, 
  "eval_batch_size": 32,
  "predict_batch_size": 32,
  "steps_per_checkpoint": 1000, # how often to save a checkpoint
  "iterations": 500, # number of batches to infeed to the tpu at a time. Must be < steps_per_checkpoint
  "train_steps": 100000, # total training steps
  "eval_steps": 0, # run evaluation for this many steps every steps_per_checkpoint
  "model_path": "gs://neo-models/vae_test2/", # directory in which to save the model
  "mesh_shape": "data:16,model:2", # mapping of processors to named dimensions - see mesh-tensorflow repo for more info
  "layout": "batch_dim:data", # which named dimensions of the model to split across the mesh - see mesh-tensorflow repo for more info
  "num_tokens": 512, # vocab size
  "dim": 512, 
  "hidden_dim": 64, # size of hidden dim
  "n_channels": 3, # number of input channels
  "bf_16": false, # if true, the model is trained with bfloat16 precision
  "lr": 0.001, # learning rate [by default learning rate starts at this value, then decays to 10% of this value over the course of the training]
  "num_layers": 3, # number of blocks in the encoder / decoder
  "train_gumbel_hard": true, # whether to use hard or soft gumbel_softmax
  "eval_gumbel_hard": true
}

DALL-E:

{
  "model_type": "dalle",
  "dataset": {
    "train_path": "gs://neo-datasets/DALLE-tfrecords/*.tfrecords", # glob path to tfrecords data
    "eval_path": "gs://neo-datasets/DALLE-tfrecords/*.tfrecords",
    "image_size": 32 # size of images (all images will be cropped / padded to this size)
  },
  "train_batch_size": 32, # see above
  "eval_batch_size": 32,
  "predict_batch_size": 32,
  "steps_per_checkpoint": 1000,
  "iterations": 500,
  "train_steps": 100000,
  "predict_steps": 0,
  "eval_steps": 0,
  "n_channels": 3,
  "bf_16": false,
  "lr": 0.001,
  "model_path": "gs://neo-models/dalle_test/",
  "mesh_shape": "data:16,model:2",
  "layout": "batch_dim:data",
  "n_embd": 512, # size of embedding dim
  "text_vocab_size": 50258, # vocabulary size of the text tokenizer
  "image_vocab_size": 512, # vocabulary size of the vae - should equal num_tokens above
  "text_seq_len": 256, # length of text inputs (all inputs longer / shorter will be truncated / padded)
  "n_layers": 6, 
  "n_heads": 4, # number of attention heads. For best performance, n_embd / n_heads should equal 128
  "vae_model": "vae_example" # path to or name of vae model config
}
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
Alphabetical Letter Recognition

BayeesNetworks-Image-Classification Alphabetical Letter Recognition In these demo we are using "Bayees Networks" Our database is composed by Learning

Mohammed Firass 4 Nov 30, 2021
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
For storing the complete exploration of Visual Question Answering for our B.Tech Project

Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio

Harsh Raj 3 Jun 16, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

NVIDIA Corporation 2k Jan 09, 2023
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022