Convolutional Recurrent Neural Networks(CRNN) for Scene Text Recognition

Overview

CRNN_Tensorflow

This is a TensorFlow implementation of a Deep Neural Network for scene text recognition. It is mainly based on the paper "An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition". You can refer to the paper for architecture details. Thanks to the author Baoguang Shi.

The model consists of a CNN stage extracting features which are fed to an RNN stage (Bi-LSTM) and a CTC loss.

Installation

This software has been developed on Ubuntu 16.04(x64) using python 3.5 and TensorFlow 1.12. Since it uses some recent features of TensorFlow it is incompatible with older versions.

The following methods are provided to install dependencies:

Conda

You can create a conda environment with the required dependencies using:

conda env create -f crnntf-env.yml

Pip

Required packages may be installed with

pip3 install -r requirements.txt

Testing the pre-trained model

Evaluate the model on the synth90k dataset

In this repo you will find a model pre-trained on the Synth 90kdataset. When the tfrecords file of synth90k dataset has been successfully generated you may evaluated the model by the following script

The pretrained crnn model weights on Synth90k dataset can be found here

python tools/evaluate_shadownet.py --dataset_dir PATH/TO/YOUR/DATASET_DIR 
--weights_path PATH/TO/YOUR/MODEL_WEIGHTS_PATH
--char_dict_path PATH/TO/CHAR_DICT_PATH 
--ord_map_dict_path PATH/TO/ORD_MAP_PATH
--process_all 1 --visualize 1

If you set visualize true the expected output during evaluation process is

evaluate output

After all the evaluation process is done you should see some thing like this:

evaluation_result

The model's main evaluation index are as follows:

Test Dataset Size: 891927 synth90k test images

Per char Precision: 0.974325 without average weighted on each class

Full sequence Precision: 0.932981 without average weighted on each class

For Per char Precision:

single_label_accuracy = correct_predicted_char_nums_of_single_sample / single_label_char_nums

avg_label_accuracy = sum(single_label_accuracy) / label_nums

For Full sequence Precision:

single_label_accuracy = 1 if the prediction result is exactly the same as label else 0

avg_label_accuracy = sum(single_label_accuracy) / label_nums

Part of the confusion matrix of every single char looks like this:

evaluation_confusion_matrix

Test the model on the single image

If you want to test a single image you can do it with

python tools/test_shadownet.py --image_path PATH/TO/IMAGE 
--weights_path PATH/TO/MODEL_WEIGHTS
--char_dict_path PATH/TO/CHAR_DICT_PATH 
--ord_map_dict_path PATH/TO/ORD_MAP_PATH

Test example images

Example test_01.jpg

Example image1

Example test_02.jpg

Example image2

Example test_03.jpg

Example image3

Training your own model

Data preparation

Download the whole synth90k dataset here And extract all th files into a root dir which should contain several txt file and several folders filled up with pictures. Then you need to convert the whole dataset into tensorflow records as follows

python tools/write_tfrecords 
--dataset_dir PATH/TO/SYNTH90K_DATASET_ROOT_DIR
--save_dir PATH/TO/TFRECORDS_DIR

During converting all the source image will be scaled into (32, 100)

Training

For all the available training parameters, check global_configuration/config.py, then train your model with

python tools/train_shadownet.py --dataset_dir PATH/TO/YOUR/TFRECORDS
--char_dict_path PATH/TO/CHAR_DICT_PATH 
--ord_map_dict_path PATH/TO/ORD_MAP_PATH

If you wish, you can add more metrics to the training progress messages with --decode_outputs 1, but this will slow training down. You can also continue the training process from a snapshot with

python tools/train_shadownet.py --dataset_dir PATH/TO/YOUR/TFRECORDS
--weights_path PATH/TO/YOUR/PRETRAINED_MODEL_WEIGHTS
--char_dict_path PATH/TO/CHAR_DICT_PATH --ord_map_dict_path PATH/TO/ORD_MAP_PATH

If you has multiple gpus in your local machine you may use multiple gpu training to access a larger batch size input data. This will be supported as follows

python tools/train_shadownet.py --dataset_dir PATH/TO/YOUR/TFRECORDS
--char_dict_path PATH/TO/CHAR_DICT_PATH --ord_map_dict_path PATH/TO/ORD_MAP_PATH
--multi_gpus 1

The sequence distance is computed by calculating the distance between two sparse tensors so the lower the accuracy value is the better the model performs. The training accuracy is computed by calculating the character-wise precision between the prediction and the ground truth so the higher the better the model performs.

Tensorflow Serving

Thanks for Eldon's contribution of tensorflow service function:)

Since tensorflow model server is a very powerful tools to serve the DL model in industry environment. Here's a script for you to convert the checkpoints model file into tensorflow saved model which can be used with tensorflow model server to serve the CRNN model. If you can not run the script normally you may need to check if the checkpoint file path is correct in the bash script.

bash tfserve/export_crnn_saved_model.sh

To start the tensorflow model server you may check following script

bash tfserve/run_tfserve_crnn_gpu.sh

There are two different ways to test the python client of crnn model. First you may test the server via http/rest request by running

python tfserve/crnn_python_client_via_request.py ./data/test_images/test_01.jpg

Second you may test the server via grpc by running

python tfserve/crnn_python_client_via_grpc.py

Experiment

The original experiment run for 2000000 epochs, with a batch size of 32, an initial learning rate of 0.01 and exponential decay of 0.1 every 500000 epochs. During training the train loss dropped as follows

Training loss

The val loss dropped as follows

Validation_loss

2019.3.27 Updates

I have uploaded a newly trained crnn model on chinese dataset which can be found here. Sorry for not knowing the owner of the dataset. But thanks for his great work. If someone knows it you're welcome to let me know. The pretrained weights can be found here

Before start training you may need reorgnize the dataset's label information according to the synth90k dataset's format if you want to use the same data feed pip line mentioned above. Now I have reimplemnted a more efficient tfrecords writer which will accelerate the process of generating tfrecords file. You may refer to the code for details. Some information about training is listed bellow:

image size: (280, 32)

classes nums: 5824 without blank

sequence length: 70

training sample counts: 2733004

validation sample counts: 364401

testing sample counts: 546601

batch size: 32

training iter nums: 200000

init lr: 0.01

Test example images

Example test_01.jpg

Example image1

Example test_02.jpg

Example image2

Example test_03.jpg

Example image3

training tboard file

Training loss

The val loss dropped as follows

Validation_loss

2019.4.10 Updates

Add a small demo to recognize chinese pdf using the chinese crnn model weights. If you want to have a try you may follow the command:

cd CRNN_ROOT_REPO
python tools/recongnize_chinese_pdf.py -c ./data/char_dict/char_dict_cn.json 
-o ./data/char_dict/ord_map_cn.json --weights_path model/crnn_chinese/shadownet.ckpt 
--image_path data/test_images/test_pdf.png --save_path pdf_recognize_result.txt

You should see the same result as follows:

The left image is the recognize result displayed on console and the right image is the origin pdf image.

recognize_result_console

The left image is the recognize result written in local file and the right image is the origin pdf image. recognize_result_file

TODO

  • Add new model weights trained on the whole synth90k dataset
  • Add multiple gpu training scripts
  • Add new pretrained model on chinese dataset
  • Add an online toy demo
  • Add tensorflow service script

Acknowledgement

Please cite my repo CRNN_Tensorflow if you use it.

Contact

Scan the following QR to disscuss :) qr

Owner
MaybeShewill-CV
Engineer from Baidu
MaybeShewill-CV
This repository provides train&test code, dataset, det.&rec. annotation, evaluation script, annotation tool, and ranking.

SCUT-CTW1500 Datasets We have updated annotations for both train and test set. Train: 1000 images [images][annos] Additional point annotation for each

Yuliang Liu 600 Dec 18, 2022
Convert Text-to Handwriting Using Python

Convert Text-to Handwriting Using Python Description In this project we'll use python library that's "pywhatkit" for converting text to handwriting. t

8 Nov 19, 2022
Erosion and dialation using structure element in OpenCV python

Erosion and dialation using structure element in OpenCV python

Tamzid hasan 2 Nov 11, 2021
document image degradation

ocrodeg The ocrodeg package is a small Python library implementing document image degradation for data augmentation for handwriting recognition and OC

NVIDIA Research Projects 134 Nov 18, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
Ddddocr - 通用验证码识别OCR pypi版

带带弟弟OCR通用验证码识别SDK免费开源版 今天ddddocr又更新啦! 当前版本为1.3.1 想必很多做验证码的新手,一定头疼碰到点选类型的图像,做样本费时

Sml2h3 4.4k Dec 31, 2022
Random maze generator and solver

Maze Generator and Solver I wrote a maze generator that works with two commonly known algorithms: Depth First Search and Randomized Prims. Both of the

Daniel Pérez 10 Sep 23, 2022
CNN+LSTM+CTC based OCR implemented using tensorflow.

CNN_LSTM_CTC_Tensorflow CNN+LSTM+CTC based OCR(Optical Character Recognition) implemented using tensorflow. Note: there is No restriction on the numbe

Watson Yang 356 Dec 08, 2022
Demo processor to illustrate OCR-D Python API

ocrd_vandalize/ Demo processor to illustrate the OCR-D/core Python API Description :TODO: write docs :) Installation From PyPI pip3 install ocrd_vanda

Konstantin Baierer 5 May 05, 2022
Vietnamese Language Detection and Recognition

Table of Content Introduction (Khôi viết) Dataset (đổi link thui thành 3k5 ảnh mình) Getting Started (An Viết) Requirements Usage Example Training & E

6 May 27, 2022
Histogram specification using openCV in python .

histogram specification using openCV in python . Have to input miu and sigma to draw gausssian distribution which will be used to map the input image . Example input can be miu = 128 sigma = 30

Tamzid hasan 6 Nov 17, 2021
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).

OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents

Zuming Huang 363 Jan 03, 2023
Learn computer graphics by writing GPU shaders!

This repo contains a selection of projects designed to help you learn the basics of computer graphics. We'll be writing shaders to render interactive two-dimensional and three-dimensional scenes.

Eric Zhang 1.9k Jan 02, 2023
Creating a virtual tv using opencv in python3.

Virtual-TV Creating a virtual tv using opencv in python3. In order to run the code follow the below given steps: Make sure the desired videos which ar

Vamsi 1 Jan 01, 2022
CUTIE (TensorFlow implementation of Convolutional Universal Text Information Extractor)

CUTIE TensorFlow implementation of the paper "CUTIE: Learning to Understand Documents with Convolutional Universal Text Information Extractor." Xiaohu

Zhao,Xiaohui 147 Dec 20, 2022
SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

NVIDIA Research Projects 31 Nov 22, 2022
The papers published in top-tier AI conferences in recent years.

AI-conference-papers The papers published in top-tier AI conferences in recent years. Paper table AAAI ICLR CVPR ICML ICCV ECCV NIPS 2019 ✔️ ✔️ ✔️ ✔️

Jinbae Park 6 Dec 09, 2022
YOLOv5 in DOTA with CSL_label.(Oriented Object Detection)(Rotation Detection)(Rotated BBox)

YOLOv5_DOTA_OBB YOLOv5 in DOTA_OBB dataset with CSL_label.(Oriented Object Detection) Datasets and pretrained checkpoint Datasets : DOTA Pretrained Ch

1.1k Dec 30, 2022
ARU-Net - Deep Learning Chinese Word Segment

ARU-Net: A Neural Pixel Labeler for Layout Analysis of Historical Documents Contents Introduction Installation Demo Training Introduction This is the

128 Sep 12, 2022
A novel region proposal network for more general object detection ( including scene text detection ).

DeRPN: Taking a further step toward more general object detection DeRPN is a novel region proposal network which concentrates on improving the adaptiv

Deep Learning and Vision Computing Lab, SCUT 151 Dec 12, 2022