Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Related tags

Deep LearningRACoLN
Overview

RACoLN Official Implementation

This repository is the official pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization" which was presented at ACL 2021 main conference as a long paper.

Tested Environment

  • pytorch == 1.9.0
  • pytyhon == 3.7.11
  • nltk == 3.6.7
  • torchtext == 0.10.0
  • pkbar == 0.5

Dataset

Our implementation used torchtext, hence we have changed the input format to jsonl. If you want to try the model on other dataset, please change the input format accordingly (you can check at data directory)

Training classifiers

In this work, we train three classifiers: 1) for reverse attention, 2) for style loss, and 3) for evaluation purpose. The classifier is made of GRU and Attention network.

The configuration is defined as the default option in the file. If you would like to try a different value, check the argparse options.

python train_cls.py

Testing the classifiers on the test set

In order to test the trained classifiers, you run the following:

python test_cls.py

The accuracy should be between 97.5 and 98.0 for Yelp dataset.

Training language model

Different from the original paper, where we have used KenLM, this repository trains a GRU-based langauge model as we can skip installing kenLM. (Although we use GRU-based LM, we have checked that the output will have similar PPL score with KenLM).

To train the langauge model for evaluation purpose, computing Perplexity, run the following:

python train_lm.py

Testing the language model

python test_lm.py

The code will output the PPL score on test set, which should be around 33.

Training Transfer Model (RACoLN)

python train_tsf_model.py

The code will start trainining the main model of the paper.

One minor change is made on the balancing parameter. In the original paper, we have normalized the total loss with number of sentences in a batch. In order to handle variable length of a corpus, this repository now normalizes the total loss with the number of tokens in a batch.

The result should be similar to the ones reported in the paper. With minor change in the balancin parameter, the PPL and ref-BLEU are slightly better while self-BLEU is slightly decreased.

Style Acc Self-BLEU Ref-BLEU PPL
RACoLN 90.9 58.73 20.67 47.18

Reference

@inproceedings{lee-etal-2021-enhancing,
    title = "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization",
    author = "Lee, Dongkyu  and
      Tian, Zhiliang  and
      Xue, Lanqing  and
      Zhang, Nevin L.",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.8",
    doi = "10.18653/v1/2021.acl-long.8",
    pages = "93--102",
}
Owner
Dongkyu Lee
Research in NLP
Dongkyu Lee
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution

Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re

Caleb Ellington 1 Sep 23, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022