Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Overview

Class-Balanced Loss Based on Effective Number of Samples

Tensorflow code for the paper:

Class-Balanced Loss Based on Effective Number of Samples
Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, Serge Belongie

Dependencies:

  • Python (3.6)
  • Tensorflow (1.14)

Datasets:

  • Long-Tailed CIFAR. We provide a download link that includes all the data used in our paper in .tfrecords format. The data was converted and generated by src/generate_cifar_tfrecords.py (original CIFAR) and src/generate_cifar_tfrecords_im.py (long-tailed CIFAR).

Effective Number of Samples:

For a visualization of the data and effective number of samples, please take a look at data.ipynb.

Key Implementation Details:

Training and Evaluation:

We provide 3 .sh scripts for training and evaluation.

  • On original CIFAR dataset:
./cifar_trainval.sh
  • On long-tailed CIFAR dataset (the hyperparameter IM_FACTOR is the inverse of "Imbalance Factor" in the paper):
./cifar_im_trainval.sh
  • On long-tailed CIFAR dataset using the proposed class-balanced loss (set non-zero BETA):
./cifar_im_trainval_cb.sh
  • Run Tensorboard for visualization:
tensorboard --logdir=./results --port=6006
  • The figure below are the results of running ./cifar_im_trainval.sh and ./cifar_im_trainval_cb.sh:

Training with TPU:

We train networks on iNaturalist and ImageNet datasets using Google's Cloud TPU. The code for this section is in tpu/. Our code is based on the official implementation of Training ResNet on Cloud TPU and forked from https://github.com/tensorflow/tpu.

Data Preparation:

  • Download datasets (except images) from this link and unzip it under tpu/. The unzipped directory tpu/raw_data/ contains the training and validation splits. For raw images, please download from the following links and put them into the corresponding folders in tpu/raw_data/:

  • Convert datasets into .tfrecords format and upload to Google Cloud Storage (gcs) using tpu/tools/datasets/dataset_to_gcs.py:

python dataset_to_gcs.py \
  --project=$PROJECT \
  --gcs_output_path=$GCS_DATA_DIR \
  --local_scratch_dir=$LOCAL_TFRECORD_DIR \
  --raw_data_dir=$LOCAL_RAWDATA_DIR

The following 3 .sh scripts in tpu/ can be used to train and evaluate models on iNaturalist and ImageNet using Cloud TPU. For more details on how to use Cloud TPU, please refer to Training ResNet on Cloud TPU.

Note that the image mean and standard deviation and input size need to be updated accordingly.

  • On ImageNet (ILSVRC 2012):
./run_ILSVRC2012.sh
  • On iNaturalist 2017:
./run_inat2017.sh
  • On iNaturalist 2018:
./run_inat2018.sh
  • The pre-trained models, including all logs viewable on tensorboard, can be downloaded from the following links:
Dataset Network Loss Input Size Download Link
ILSVRC 2012 ResNet-50 Class-Balanced Focal Loss 224 link
iNaturalist 2018 ResNet-50 Class-Balanced Focal Loss 224 link

Citation

If you find our work helpful in your research, please cite it as:

@inproceedings{cui2019classbalancedloss,
  title={Class-Balanced Loss Based on Effective Number of Samples},
  author={Cui, Yin and Jia, Menglin and Lin, Tsung-Yi and Song, Yang and Belongie, Serge},
  booktitle={CVPR},
  year={2019}
}
Owner
Yin Cui
Research Scientist at Google
Yin Cui
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
Official repository for Hierarchical Opacity Propagation for Image Matting

HOP-Matting Official repository for Hierarchical Opacity Propagation for Image Matting 🚧 🚧 🚧 Under Construction 🚧 🚧 🚧 🚧 🚧 🚧   Coming Soon   

Li Yaoyi 54 Dec 30, 2021
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning

ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class

Hyuck Lee 25 Dec 22, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022