Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Related tags

Deep LearningSPPR
Overview

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning

This is the implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning" (accepted to CVPR2021).

For more information, check out the paper on [arXiv].

Requirements

  • Python 3.8
  • PyTorch 1.8.1 (>1.1.0)
  • cuda 11.2

Preparing Few-Shot Class-Incremental Learning Datasets

Download following datasets:

1. CIFAR-100

Automatically downloaded on torchvision.

2. MiniImageNet

(1) Download MiniImageNet train/test images[github], and prepare related datasets according to [TOPIC].

(2) or Download processed data from our Google Drive: [mini-imagenet.zip], (and locate the entire folder under datasets/ directory).

3. CUB200

(1) Download CUB200 train/test images, and prepare related datasets according to [TOPIC]:

wget http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz

(2) or Download processed data from our Google Drive: [cub.zip], (and locate the entire folder under datasets/ directory).

Create a directory '../datasets' for the above three datasets and appropriately place each dataset to have following directory structure:

../                                                        # parent directory
├── ./                                           # current (project) directory
│   ├── log/                              # (dir.) running log
│   ├── pre/                              # (dir.) trained models for test.
│   ├── utils/                            # (dir.) implementation of paper 
│   ├── README.md                          # intstruction for reproduction
│   ├── test.sh                          # bash for testing.
│   ├── train.py                        # code for training model
│   └── train.sh                        # bash for training model
└── datasets/
    ├── CIFAR100/                      # CIFAR100 devkit
    ├── mini-imagenet/           
    │   ├── train/                         # (dir.) training images (from Google Drive)
    │   ├── test/                           # (dir.) testing images (from Google Drive)
    │   └── ..some csv files..
    └── cub/                                   # (dir.) contains 200 object classes
        ├── train/                             # (dir.) training images (from Google Drive)
        └── test/                               # (dir.) testing images (from Google Drive)

Training

Choose apporopriate lines in train.sh file.

sh train.sh
  • '--base_epochs' can be modified to control the initial accuracy ('Our' vs 'Our*' in our paper).
  • Training takes approx. several hours until convergence (trained with one 2080 Ti or 3090 GPUs).

Testing

1. Download pretrained models to the 'pre' folder.

Pretrained models are available on our [Google Drive].

2. Test

Choose apporopriate lines in train.sh file.

sh test.sh 

Main Results

The experimental results with 'test.sh 'for three datasets are shown below.

1. CIFAR-100

Model 1 2 3 4 5 6 7 8 9
iCaRL 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73
TOPIC 64.10 56.03 47.89 42.99 38.02 34.60 31.67 28.35 25.86
Ours 63.97 65.86 61.31 57.6 53.39 50.93 48.27 45.36 43.32

2. MiniImageNet

Model 1 2 3 4 5 6 7 8 9
iCaRL 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21
TOPIC 61.31 45.58 43.77 37.19 32.38 29.67 26.44 25.18 21.80
Ours 61.45 63.80 59.53 55.53 52.50 49.60 46.69 43.79 41.92

3. CUB200

Model 1 2 3 4 5 6 7 8 9 10 11
iCaRL 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16
TOPIC 68.68 61.01 55.35 50.01 42.42 39.07 35.47 32.87 30.04 25.91 24.85
Ours 68.05 62.01 57.61 53.67 50.77 46.76 45.43 44.53 41.74 39.93 38.45

The presented results are slightly different from those in the paper, which are the average results of multiple tests.

BibTeX

If you use this code for your research, please consider citing:

@inproceedings{zhu2021self,
  title={Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning},
  author={Zhu, Kai and Cao, Yang and Zhai, Wei and Cheng, Jie and Zha, Zheng-Jun},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={6801--6810},
  year={2021}
}
Owner
Kai Zhu
Kai Zhu
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
Balancing Principle for Unsupervised Domain Adaptation

Blancing Principle for Domain Adaptation NeurIPS 2021 Paper Abstract We address the unsolved algorithm design problem of choosing a justified regulari

Marius-Constantin Dinu 4 Dec 15, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

55 Dec 21, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Kalpesh Krishna 41 Nov 08, 2022
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022