Tensorflow-Project-Template - A best practice for tensorflow project template architecture.

Overview

Tensorflow Project Template

A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributing in tensorflow projects here's a tensorflow project template that combines simplcity, best practice for folder structure and good OOP design. The main idea is that there's much stuff you do every time you start your tensorflow project, so wrapping all this shared stuff will help you to change just the core idea every time you start a new tensorflow project.

So, here's a simple tensorflow template that help you get into your main project faster and just focus on your core (Model, Training, ...etc)

Table Of Contents

In a Nutshell

In a nutshell here's how to use this template, so for example assume you want to implement VGG model so you should do the following:

  • In models folder create a class named VGG that inherit the "base_model" class
    class VGGModel(BaseModel):
        def __init__(self, config):
            super(VGGModel, self).__init__(config)
            #call the build_model and init_saver functions.
            self.build_model() 
            self.init_saver() 
  • Override these two functions "build_model" where you implement the vgg model, and "init_saver" where you define a tensorflow saver, then call them in the initalizer.
     def build_model(self):
        # here you build the tensorflow graph of any model you want and also define the loss.
        pass
            
     def init_saver(self):
        # here you initalize the tensorflow saver that will be used in saving the checkpoints.
        self.saver = tf.train.Saver(max_to_keep=self.config.max_to_keep)
  • In trainers folder create a VGG trainer that inherit from "base_train" class
    class VGGTrainer(BaseTrain):
        def __init__(self, sess, model, data, config, logger):
            super(VGGTrainer, self).__init__(sess, model, data, config, logger)
  • Override these two functions "train_step", "train_epoch" where you write the logic of the training process
    def train_epoch(self):
        """
       implement the logic of epoch:
       -loop on the number of iterations in the config and call the train step
       -add any summaries you want using the summary
        """
        pass

    def train_step(self):
        """
       implement the logic of the train step
       - run the tensorflow session
       - return any metrics you need to summarize
       """
        pass
  • In main file, you create the session and instances of the following objects "Model", "Logger", "Data_Generator", "Trainer", and config
    sess = tf.Session()
    # create instance of the model you want
    model = VGGModel(config)
    # create your data generator
    data = DataGenerator(config)
    # create tensorboard logger
    logger = Logger(sess, config)
  • Pass the all these objects to the trainer object, and start your training by calling "trainer.train()"
    trainer = VGGTrainer(sess, model, data, config, logger)

    # here you train your model
    trainer.train()

You will find a template file and a simple example in the model and trainer folder that shows you how to try your first model simply.

In Details

Project architecture

Folder structure

├──  base
│   ├── base_model.py   - this file contains the abstract class of the model.
│   └── base_train.py   - this file contains the abstract class of the trainer.
│
│
├── model               - this folder contains any model of your project.
│   └── example_model.py
│
│
├── trainer             - this folder contains trainers of your project.
│   └── example_trainer.py
│   
├──  mains              - here's the main(s) of your project (you may need more than one main).
│    └── example_main.py  - here's an example of main that is responsible for the whole pipeline.

│  
├──  data _loader  
│    └── data_generator.py  - here's the data_generator that is responsible for all data handling.
│ 
└── utils
     ├── logger.py
     └── any_other_utils_you_need

Main Components

Models


  • Base model

    Base model is an abstract class that must be Inherited by any model you create, the idea behind this is that there's much shared stuff between all models. The base model contains:

    • Save -This function to save a checkpoint to the desk.
    • Load -This function to load a checkpoint from the desk.
    • Cur_epoch, Global_step counters -These variables to keep track of the current epoch and global step.
    • Init_Saver An abstract function to initialize the saver used for saving and loading the checkpoint, Note: override this function in the model you want to implement.
    • Build_model Here's an abstract function to define the model, Note: override this function in the model you want to implement.
  • Your model

    Here's where you implement your model. So you should :

    • Create your model class and inherit the base_model class
    • override "build_model" where you write the tensorflow model you want
    • override "init_save" where you create a tensorflow saver to use it to save and load checkpoint
    • call the "build_model" and "init_saver" in the initializer.

Trainer


  • Base trainer

    Base trainer is an abstract class that just wrap the training process.

  • Your trainer

    Here's what you should implement in your trainer.

    1. Create your trainer class and inherit the base_trainer class.
    2. override these two functions "train_step", "train_epoch" where you implement the training process of each step and each epoch.

Data Loader

This class is responsible for all data handling and processing and provide an easy interface that can be used by the trainer.

Logger

This class is responsible for the tensorboard summary, in your trainer create a dictionary of all tensorflow variables you want to summarize then pass this dictionary to logger.summarize().

This class also supports reporting to Comet.ml which allows you to see all your hyper-params, metrics, graphs, dependencies and more including real-time metric. Add your API key in the configuration file:

For example: "comet_api_key": "your key here"

Comet.ml Integration

This template also supports reporting to Comet.ml which allows you to see all your hyper-params, metrics, graphs, dependencies and more including real-time metric.

Add your API key in the configuration file:

For example: "comet_api_key": "your key here"

Here's how it looks after you start training:

You can also link your Github repository to your comet.ml project for full version control. Here's a live page showing the example from this repo

Configuration

I use Json as configuration method and then parse it, so write all configs you want then parse it using "utils/config/process_config" and pass this configuration object to all other objects.

Main

Here's where you combine all previous part.

  1. Parse the config file.
  2. Create a tensorflow session.
  3. Create an instance of "Model", "Data_Generator" and "Logger" and parse the config to all of them.
  4. Create an instance of "Trainer" and pass all previous objects to it.
  5. Now you can train your model by calling "Trainer.train()"

Future Work

  • Replace the data loader part with new tensorflow dataset API.

Contributing

Any kind of enhancement or contribution is welcomed.

Acknowledgments

Thanks for my colleague Mo'men Abdelrazek for contributing in this work. and thanks for Mohamed Zahran for the review. Thanks for Jtoy for including the repo in Awesome Tensorflow.

Owner
Mahmoud G. Salem
MSc. in AI at university of Guelph and Vector Institute. AI intern @samsung
Mahmoud G. Salem
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.

Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip

Keplr 495 Dec 10, 2022
This is a Python wrapper for TA-LIB based on Cython instead of SWIG.

TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re

John Benediktsson 7.3k Jan 03, 2023
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Openspoor The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch

7 Aug 22, 2022
Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Find Line Detection (Image Processing) Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicl

LMF 4 Jun 21, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
BackgroundRemover lets you Remove Background from images and video with a simple command line interface

BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov

Johnathan Nader 1.7k Dec 30, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
Membership Inference Attack against Graph Neural Networks

MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta

6 Nov 09, 2022