The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Overview

Openspoor

alt text

The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway. Its goal is to be publicly available and function as an open source package.

Currently the openspoor package allows the following transformations:

Type of input:

  • Point data

These transformations can be performed between the following systems:

Geographical systems:

  • WGS84 coordinate system (commonly known as GPS coordinates)
  • EPSG:28992 coordinate system (commonly known in the Netherlands as Rijksdriehoek)

Topological systems:

  • Geocode and geocode kilometrering
  • Spoortak and spoortak kilometrering (unavailable on switches)

Getting Started

Installation

Installation using anaconda

  • Clone the "openspoor" repository
    • pip install openspoor
  • create an environment:
    • conda create -n openspoorenv python==3.6.12
  • activate the environment:
    • conda activate openspoorenv
  • If you are installing on Windows OS with Anaconda, first install rtree and geopandas through anaconda with the commands:
    • conda install rtree==0.8.3 -y
    • conda install geopandas==0.6.1 -y
  • In the root directory of the repository, execute the command:
    • pip install -r requirements.txt
  • In the root directory of the repository, execute the command:
    • pip install .
  • In the root directory of the repository, execute the command:
    • python -m pytest
  • If all the test succeed, the openspoor package is ready to use and you are on the right "track"!

Demonstration notebook

In the future a notebook will be added that demonstrates the use of the openspoor package. For now one can take the code in the acceptance tests as example of how to use the package.

Dependencies

The transformations available in the openspoor package rely completely on data and API's made available at https://mapservices.prorail.nl/. Be aware of this dependency and specifically of the following possible issues:

  • The use of API's on mapservices.prorail.nl is changed
  • The output data of the mapservices API's is changed (with added, removed or missing columns for instance)

Furthermore mapservices.prorail.nl only provides current information about the topological systems used in Dutch Railways. As the topological systems tend to change with time, due to changing infrastructure and naming conventions, the current topological system is not necessarily sufficient to provide transformations on historical data. In the future we hope to add historical topological systems as part of the functionality of this package in such a way that it is available publicly.

Structure

The structure of the openspoor package is largely split in two categories.

MapservicesData

The MapservicesData classes use mapservices.prorail.nl API's to retrieve the necessary data to perform transformations. The essentially function as an interface with the topological systems used by ProRail.

  • PUICMapservices provides general data about railway tracks (spoor) and switches (wissel and kruisingbenen). This contains information regarding Geocode, geocodekilometrering, but also Spoortak identificatie.
  • SpoortakMapservices provides information about railway tracks concerning Spoortak identificatie and lokale kilometrering.

Transformers

The various transformers use the geopandas dataframes obtained by MapservicesData objects to add additional geographical or topological systems to a given geopandas input dataframe. The current transformers only function for geopandas dataframes containing Point data. The available transformers are:

  • TransformerCoordinatesToSpoor: transforms WGS84 or EPSG:28992 coordinates to spoortak and lokale kilomtrering as well as geocode and geocode kilometrering.
  • TransformerGeocodeToCoordinates: transforms geocode and geocode kilometrering to WGS84 or EPSG:28992 coordinates.
  • TransformerSpoorToCoordinates: transforms spoortak and lokale kilometrering to WGS84 or EPSG:28992 coordinates.

Release History

  • 0.1.0
    • The first proper release
    • ADD: transform point data between geographical systems.
  • 0.0.1
    • Work in progress

Contributing

The openspoor package stimulates every other person the contribute to the package. To do so:

  • Fork it
  • Create your feature branch (git checkout -b feature/fooBar)
  • Commit your changes (git commit -am 'Add some fooBar')
  • Push to the branch (git push origin feature/fooBar)
  • Create a new Pull Request with 3 obligated reviewers from the developement team.

You could also contribute by thinking of possible new features. The current backlog is:

  • Make the package available for the "spoor" industry.
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
交互式标注软件,暂定名 iann

iann 交互式标注软件,暂定名iann。 安装 按照官网介绍安装paddle。 安装其他依赖 pip install -r requirements.txt 运行 git clone https://github.com/PaddleCV-SIG/iann/ cd iann python iann

294 Dec 30, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
A CV toolkit for my papers.

PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to

Hang Zhang 2k Jan 04, 2023
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022