[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

Related tags

Deep LearningMVFNet
Overview

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

1

Overview

We release the code of the MVFNet (Multi-View Fusion Network). The core code to implement the Multi-View Fusion Module is codes/models/modules/MVF.py.

[Mar 24, 2021] We has released the code of MVFNet.

[Dec 20, 2020] MVFNet has been accepted by AAAI 2021.

Prerequisites

All dependencies can be installed using pip:

python -m pip install -r requirements.txt

Our experiments run on Python 3.7 and PyTorch 1.5. Other versions should work but are not tested.

Download Pretrained Models

  • Download ImageNet pre-trained models
cd pretrained
sh download_imgnet.sh
  • Download K400 pre-trained models

Please refer to Model Zoo.

Data Preparation

Please refer to DATASETS.md for data preparation.

Model Zoo

Architecture Dataset T x interval Top-1 Acc. Pre-trained model Train log Test log
MVFNet-ResNet50 Kinetics-400 4x16 74.2% Download link Log link Log link
MVFNet-ResNet50 Kinetics-400 8x8 76.0% Download link Miss Log link
MVFNet-ResNet50 Kinetics-400 16x4 77.0% Download link Log link Log link
MVFNet-ResNet101 Kinetics-400 4x16 76.0% Download link Log link Log link
MVFNet-ResNet101 Kinetics-400 8x8 77.4% Download link Log link Log link
MVFNet-ResNet101 Kinetics-400 16x4 78.4% Download link Log link Log link

Testing

  • For 3 crops, 10 clips, the processing of testing
# Dataset: Kinetics-400
# Architecture: R50_8x8 [email protected]=76.0%
bash scripts/dist_test_recognizer.sh configs/MVFNet/K400/mvf_kinetics400_2d_rgb_r50_dense.py ckpt_path 8 --fcn_testing

Training

This implementation supports multi-gpu, DistributedDataParallel training, which is faster and simpler.

  • For example, to train MVFNet-ResNet50 on Kinetics400 with 8 gpus, you can run:
bash scripts/dist_train_recognizer.sh configs/MVFNet/K400/mvf_kinetics400_2d_rgb_r50_dense.py 8

Acknowledgements

We especially thank the contributors of the mmaction codebase for providing helpful code.

License

This repository is released under the Apache-2.0. license as found in the LICENSE file.

Citation

If you think our work is useful, please feel free to cite our paper 😆 :

@inproceedings{wu2020MVFNet,
  author    = {Wu, Wenhao and He, Dongliang and Lin, Tianwei and Li, Fu and Gan, Chuang and Ding, Errui},
  title     = {MVFNet: Multi-View Fusion Network for Efficient Video Recognition},
  booktitle = {AAAI},
  year      = {2021}
}

Contact

For any question, please file an issue or contact

Wenhao Wu: [email protected]
You might also like...
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

AdaFocus (ICCV 2021)  Adaptive Focus for Efficient Video Recognition
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Official code for
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Implementation of
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Comments
  • Is this right for the test configuration?

    Is this right for the test configuration?

    Hi I noticed your great job for action recognition from AAAI 2021. And I am trying to get the test results as yours on Kinetics400. After I have processed all the test videos to get the frames, I found that there is no annotation processing for kinetics400 test set up, neither in your configuration file. Could you share the test annotation for Kinetics400 and explain why using validation for test? https://github.com/whwu95/MVFNet/blob/ed336228ad88821ffe407a4355017acb416e4670/configs/MVFNet/K400/mvf_kinetics400_2d_rgb_r50_dense.py#L58 https://github.com/whwu95/MVFNet/blob/ed336228ad88821ffe407a4355017acb416e4670/configs/MVFNet/K400/mvf_kinetics400_2d_rgb_r50_dense.py#L145

    ann_file_test = 'datalist/kinetics400/val_ffmpeg_fps30.txt'
    ...
    test=dict(
            type=dataset_type,
            ann_file=ann_file_test,
            data_root=data_root_val,
            pipeline=test_pipeline, 
            test_mode=True,
            modality='RGB',
            filename_tmpl='img_{:05}.jpg'    ))
    

    Thanks a lot!

    opened by DanLuoNEU 2
  • About online recognition

    About online recognition

    Thank you for your great work. My question is that the mvf module needs to use convolution among multi-view dimensions,especially contains T dimension. If we want to apply the model into online recognition, it is difficult to store too many history frames. So how to apply it to the online recognition?Thank you.

    opened by ohheysherry66 0
Owner
Wenhao Wu
Wenhao Wu
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

61 Jan 01, 2023
Official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks"

Easy-To-Hard The official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks". Gett

Avi Schwarzschild 52 Sep 08, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Clova AI Research 80 Dec 16, 2022
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021