Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Overview

Welcome to the cuQuantum repository!

This public repository contains two sets of files related to the NVIDIA cuQuantum SDK:

  • samples: All C/C++ sample codes for the cuQuantum SDK.
  • python: The open-sourced cuQuantum Python project.

Other components of the cuQuantum SDK can be accessed following the instruction given in the documentation.

Installation

The instructions for how to build and install these files are given in both the subfolders and the cuQuantum documentation.

License

All files hosted in this repository are subject to the BSD-3-Clause license.

Comments
  • compile tensornet_example.cu

    compile tensornet_example.cu

    Hi, I'm trying to follow the instruction on how to compile tensornet_example.cu . https://github.com/NVIDIA/cuQuantum/tree/main/samples/cutensornet I think it is inconsistent because it says: export CUTENSORNET_ROOT=<path_to_custatevec_root>

    but currently, custatevec is not part of CUTENSORNET anymore. It is a part of CUQUANTUM. I'm referring to this pair:

    https://developer.download.nvidia.com/compute/cuquantum/redist/cuquantum/linux-x86_64/cuquantum-linux-x86_64-0.1.0.30-archive.tar.xz

    https://developer.download.nvidia.com/compute/cutensor/redist/libcutensor/linux-x86_64/libcutensor-linux-x86_64-1.4.0.6-archive.tar.xz Can you please clarify how to configure the Makefile to work with these 2 libs and compile tensornet_example.cu ? Thanks Jan Balewski, NERSC

    opened by balewski 18
  • [Question/Issue] How to install cuquantum on WSL2 Ubuntu-20.04?

    [Question/Issue] How to install cuquantum on WSL2 Ubuntu-20.04?

    I'm unsure whether this is an issue on my side, or just a missing compatibility. **Problem: ** When installing custatevec on Ubuntu 20.04 (on WSL2), it fails on the last of the following commands:

    $ wget https://developer.download.nvidia.com/compute/cuquantum/22.07.1/local_installers/cuquantum-local-repo-ubuntu2004-22.07.1_1.0-1_amd64.deb
    $ sudo dpkg -i cuquantum-local-repo-ubuntu2004-22.07.1_1.0-1_amd64.deb
    $ sudo cp /var/cuquantum-local-repo-ubuntu2004-22.07.1/cuquantum-*-keyring.gpg /usr/share/keyrings/
    $ sudo apt-get update
    $ sudo apt-get -y install cuquantum cuquantum-dev cuquantum-doc
    

    with the following cuBLAS error:

    $ sudo apt-get -y install cuquantum cuquantum-dev cuquantum-doc
    Reading package lists... Done
    Building dependency tree
    Reading state information... Done
    Some packages could not be installed. This may mean that you have
    requested an impossible situation or if you are using the unstable
    distribution that some required packages have not yet been created
    or been moved out of Incoming.
    The following information may help to resolve the situation:
    
    The following packages have unmet dependencies:
     cuquantum : Depends: libcublaslt.so.11 but it is not installable or
                          libcublas-11-0 but it is not installable or
                          libcublas-11-1 but it is not installable or
                          libcublas-11-2 but it is not installable or
                          libcublas-11-3 but it is not installable or
                          libcublas-11-4 but it is not installable or
                          libcublas-11-5 but it is not installable or
                          libcublas-11-6 but it is not installable
                 Depends: libcutensor1 but it is not installable
    E: Unable to correct problems, you have held broken packages.
    

    Any idea what may be causing this? I looked into cublas directly but I thought it may be too invasive for such a simple issue. I already have custatevec working on an ubuntu GCP instance so I'm wondering if this is due to an incompatibility with Window's Subsystem for Linux 2.

    opened by Sinestro38 9
  • CUTENSORNET_STATUS_CUTENSOR_VERSION_MISMATCH in line 198

    CUTENSORNET_STATUS_CUTENSOR_VERSION_MISMATCH in line 198

    I am trying to compile the examples in the /samples/cutensornet directory and the compilation is successful, however it fails at runtime with the error in the subject.

    According to https://github.com/NVIDIA/cuQuantum/blob/main/samples/cutensornet/README.md and https://docs.nvidia.com/cuda/cuquantum/cutensornet/index.html as of today, I must have

    I actually have

    • cuTensorNet v1.1.0
    • CUDA Version: 11.7 with Driver Version: 515.48.07
    • cuTENSOR v1.6.0.3 (from libcutensor-linux-x86_64-1.6.0.3-archive)

    So I meet all the requirements but still get that error. The only thing I can think is that libcutensor libraries are split in 3 directories for 10.2, 11, and 11.0 so perhaps CUDA v11.7 is too new? Does anybody has any insight?

    opened by davide-q 9
  • pip module search for libcublas.so.11

    pip module search for libcublas.so.11

    Environment:

    • Ubuntu 20.04 LTS
    • Python 3.8

    Symptom:

    >>> import cuquantum
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/usr/local/lib/python3.8/dist-packages/cuquantum/__init__.py", line 1, in <module>
        from cuquantum import custatevec
      File "/usr/local/lib/python3.8/dist-packages/cuquantum/custatevec/__init__.py", line 1, in <module>
        from cuquantum.custatevec.custatevec import *
    ImportError: libcublas.so.11: cannot open shared object file: No such file or directory
    
    

    I guess that pyculib should be converted to pip, too.

    opened by sanori 6
  • Dockerfile install

    Dockerfile install

    Hi,

    I am trying to build an image with cuquantum and the code samples installed. Here is what I have so far, compiled from the README here and in the documentation :

    FROM nvcr.io/nvidia/pytorch:22.01-py3
    
    # Get cuquantum
    ENV CUQUANTUM_ROOT=/opt/cuquantum0.1.0.30
    ARG TARFILE=cuquantum-linux-x86_64-0.1.0.30-archive.tar.xz
    RUN wget -O /tmp/${TARFILE} \
        https://developer.download.nvidia.com/compute/cuquantum/redist/linux-x86_64/${TARFILE} && \
        mkdir -p ${CUQUANTUM_ROOT} && \
        tar xvf /tmp/${TARFILE} -C ${CUQUANTUM_ROOT} --strip-components=1 && \
        #lib64/ is missing, symlink it to lib/
        ln -s ${CUQUANTUM_ROOT}/lib ${CUQUANTUM_ROOT}/lib64 && \
        rm /tmp/${TARFILE}
    ENV LD_LIBRARY_PATH=${CUQUANTUM_ROOT}/lib:${LD_LIBRARY_PATH}
    
    # Install cuquantum python bindings, remove previous cupy version
    # TODO verify
    RUN pip uninstall -y cupy-cuda115 && \
        conda install -c conda-forge cuquantum-python
    
    
    ENV CUSTATEVEC_ROOT=${CUQUANTUM_ROOT}
    ENV CUTENSORNET_ROOT=${CUQUANTUM_ROOT}
    ENV PATH=/usr/local/cuda/bin/:${PATH}
    
    # Get samples repo
    ARG TARFILE=v0.1.0.0.tar.gz
    RUN wget -O /tmp/${TARFILE} https://github.com/NVIDIA/cuQuantum/archive/refs/tags/${TARFILE} && \
        mkdir -p ${CUSTATEVEC_ROOT}/code_samples && \
        tar xvf /tmp/${TARFILE} -C ${CUSTATEVEC_ROOT}/code_samples --strip-components=1 && \
        rm /tmp/${TARFILE}
    

    The image has cupy-cuda115, the conda install of cuquantum-python installs another version of cupy as a dependency so I uninstall the old one (it will complain during import if both are available). make all builds successfully (though the lib64->lib symlink is needed for it to work), but I am unable to run the python samples without hitting import errors.

    I am running on an intel-chip mac, just trying to clear up the import errors before we run this on a cloud instance with an nvidia GPU mounted in.

    Before posting any stacktraces, am I on the right track here? Maybe I should use a different base image that has an equivalent version of cupy. I'm also not sure if the cuda version is incompatible.

    I am happy to submit a PR with the working Dockerfile once we figure this all out :)

    question 
    opened by brian-dellabetta 6
  • distributed_reset_configuration failed:  python: distributed_interfaces/cutensornet_distributed_interface_mpi.c:44: unpackMpiCommunicator: Assertion `sizeof(MPI_Comm) == comm->commSize' failed.

    distributed_reset_configuration failed: python: distributed_interfaces/cutensornet_distributed_interface_mpi.c:44: unpackMpiCommunicator: Assertion `sizeof(MPI_Comm) == comm->commSize' failed.

    Under the following setup.

    Hardware: INSPUR NF5488M5 (V100 version) environments: Ubuntu 22.04.1 LTS Python 3.9.15 Nvidia driver: 525.60.13 cuda_12.0.r12.0 mpich-4.0.3 mpi4py 3.1.4 cuquantum 22.11.0

    When I run /cuQuantum/python/samples/cutensornet/tensornet_example_mpi.py , I got. It works .

    *** Printing is done only from the root process to prevent jumbled messages ***
    The number of processes is 1
    cuTensorNet-vers: 20000
    ===== root process device info ======
    GPU-name: Tesla V100-SXM3-32GB
    GPU-clock: 1597000
    GPU-memoryClock: 958000
    GPU-nSM: 80
    GPU-major: 7
    GPU-minor: 0
    ========================
    Include headers and define data types.
    Define network, modes, and extents.
    Initialize the cuTensorNet library and create a network descriptor.
    Process 0 has the path with the lowest FLOP count 4299161600.0.
    Find an optimized contraction path with cuTensorNet optimizer.
    Allocate workspace.
    Create a contraction plan for cuTENSOR and optionally auto-tune it.
    Contract the network, each slice uses the same contraction plan.
    Check cuTensorNet result against that of cupy.einsum().
    num_slices: 1
    0.8309440016746521 ms / slice
    5173.82831013358 GFLOPS/s
    Free resource and exit.
    

    But when I run /cuQuantum/python/samples/cutensornet/tensornet_example_mpi_auto.py I got the following error.

    *** Printing is done only from the root process to prevent jumbled messages ***
    The number of processes is 1
    cuTensorNet-vers: 20000
    ===== root process device info ======
    GPU-name: Tesla V100-SXM3-32GB
    GPU-clock: 1597000
    GPU-memoryClock: 958000
    GPU-nSM: 80
    GPU-major: 7
    GPU-minor: 0
    ========================
    Include headers and define data types.
    Define network, modes, and extents.
    Initialize the cuTensorNet library and create a network descriptor.
    python: distributed_interfaces/cutensornet_distributed_interface_mpi.c:44: unpackMpiCommunicator: Assertion `sizeof(MPI_Comm) == comm->commSize' failed.
    [suneo:06467] *** Process received signal ***
    [suneo:06467] Signal: Aborted (6)
    [suneo:06467] Signal code:  (-6)
    [suneo:06467] [ 0] /lib/x86_64-linux-gnu/libc.so.6(+0x42520)[0x7f55bbd22520]
    [suneo:06467] [ 1] /lib/x86_64-linux-gnu/libc.so.6(pthread_kill+0x12c)[0x7f55bbd76a7c]
    [suneo:06467] [ 2] /lib/x86_64-linux-gnu/libc.so.6(raise+0x16)[0x7f55bbd22476]
    [suneo:06467] [ 3] /lib/x86_64-linux-gnu/libc.so.6(abort+0xd3)[0x7f55bbd087f3]
    [suneo:06467] [ 4] /lib/x86_64-linux-gnu/libc.so.6(+0x2871b)[0x7f55bbd0871b]
    [suneo:06467] [ 5] /lib/x86_64-linux-gnu/libc.so.6(+0x39e96)[0x7f55bbd19e96]
    [suneo:06467] [ 6] /home/tsujino/anaconda3/envs/cu/lib/libcutensornet_distributed_interface_mpi.so(+0x123c)[0x7f553de1223c]
    [suneo:06467] [ 7] /home/tsujino/anaconda3/envs/cu/lib/libcutensornet_distributed_interface_mpi.so(cutensornetMpiCommRank+0x23)[0x7f553de122ae]
    [suneo:06467] [ 8] /home/tsujino/anaconda3/envs/cu/lib/python3.9/site-packages/cuquantum/cutensornet/../../../../libcutensornet.so.2(+0x105462)[0x7f554c705462]
    [suneo:06467] [ 9] /home/tsujino/anaconda3/envs/cu/lib/python3.9/site-packages/cuquantum/cutensornet/../../../../libcutensornet.so.2(+0x1056bd)[0x7f554c7056bd]
    [suneo:06467] [10] /home/tsujino/anaconda3/envs/cu/lib/python3.9/site-packages/cuquantum/cutensornet/../../../../libcutensornet.so.2(+0x1058ed)[0x7f554c7058ed]
    [suneo:06467] [11] /home/tsujino/anaconda3/envs/cu/lib/python3.9/site-packages/cuquantum/cutensornet/../../../../libcutensornet.so.2(cutensornetDistributedResetConfiguration+0xd3)[0x7f554c703633]
    [suneo:06467] [12] /home/tsujino/anaconda3/envs/cu/lib/python3.9/site-packages/cuquantum/cutensornet/cutensornet.cpython-39-x86_64-linux-gnu.so(+0x26063)[0x7f554e65c063]
    [suneo:06467] [13] python[0x507457]
    [suneo:06467] [14] python(_PyObject_MakeTpCall+0x2ec)[0x4f068c]
    [suneo:06467] [15] python(_PyEval_EvalFrameDefault+0x525b)[0x4ec9fb]
    [suneo:06467] [16] python[0x4e689a]
    [suneo:06467] [17] python(_PyEval_EvalCodeWithName+0x47)[0x4e6527]
    [suneo:06467] [18] python(PyEval_EvalCodeEx+0x39)[0x4e64d9]
    [suneo:06467] [19] python(PyEval_EvalCode+0x1b)[0x59329b]
    [suneo:06467] [20] python[0x5c0ad7]
    [suneo:06467] [21] python[0x5bcb00]
    [suneo:06467] [22] python[0x4566f4]
    [suneo:06467] [23] python(PyRun_SimpleFileExFlags+0x1a2)[0x5b67e2]
    [suneo:06467] [24] python(Py_RunMain+0x37e)[0x5b3d5e]
    [suneo:06467] [25] python(Py_BytesMain+0x39)[0x587349]
    [suneo:06467] [26] /lib/x86_64-linux-gnu/libc.so.6(+0x29d90)[0x7f55bbd09d90]
    [suneo:06467] [27] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80)[0x7f55bbd09e40]
    [suneo:06467] [28] python[0x5871fe]
    [suneo:06467] *** End of error message ***
    Aborted (core dumped)
    

    I have tried other smaples and those works.

    opened by koichi-tsujino 5
  • How to run a browser for jupyter notebook in cuQuantum docker environment ?

    How to run a browser for jupyter notebook in cuQuantum docker environment ?

    Nvidia cuQuantum Following the well designed documentation I was able to successfully get this to run. I am using terminal to write my Quantum experiments.I want to know how to run a jupyter notebook inside docker container. After installing jupyter in docker and running it gives a link that doesn't open in a browser of my linux system.I then installed firefox inside cuQuantum docker but it doesn't launch the browser. Gives a display not found error.How can I run my experiments in jupyter ?

    opened by ShashiQubit 3
  • cuQuantum Python v22.03.0: `ModuleNotFoundError: No module named 'typing_extensions'`

    cuQuantum Python v22.03.0: `ModuleNotFoundError: No module named 'typing_extensions'`

    Workaround: please install typing_extensions via pip or conda:

    pip install typing_extensions
    

    or

    conda install -c conda-forge typing_extensions
    

    Symptom:

    leof:~$ python
    Python 3.9.10 | packaged by conda-forge | (main, Feb  1 2022, 21:24:37) 
    [GCC 9.4.0] on linux
    Type "help", "copyright", "credits" or "license" for more information.
    >>> import cuquantum
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/home/leof/miniforge3/envs/ppqwqq/lib/python3.9/site-packages/cuquantum/__init__.py", line 2, in <module>
        from cuquantum import cutensornet
      File "/home/leof/miniforge3/envs/ppqwqq/lib/python3.9/site-packages/cuquantum/cutensornet/__init__.py", line 2, in <module>
        from cuquantum.cutensornet.configuration import *
      File "/home/leof/miniforge3/envs/ppqwqq/lib/python3.9/site-packages/cuquantum/cutensornet/configuration.py", line 19, in <module>
        from .memory import BaseCUDAMemoryManager
      File "/home/leof/miniforge3/envs/ppqwqq/lib/python3.9/site-packages/cuquantum/cutensornet/memory.py", line 7, in <module>
        from typing_extensions import Protocol, runtime_checkable
    ModuleNotFoundError: No module named 'typing_extensions'
    
    opened by leofang 3
  • CircuitToEinsum for QFT: batched_amplitudes slower than qsim full statevector simulation

    CircuitToEinsum for QFT: batched_amplitudes slower than qsim full statevector simulation

    I was trying to reproduce the statement in https://developer.nvidia.com/blog/nvidia-announces-cuquantum-beta-availability-record-quantum-benchmark-and-quantum-container/, in particular

    Quantum Fourier Transform – accelerated from 29 mins down to 19 secs

    I'm running the following minimal reproducer on Python 3.8, cuQuantum 22.11, NVIDIA A100 40 GB (on a GCP instance)

    import time
    
    import cirq
    import qsimcirq
    import cupy
    from cuquantum import contract
    from cuquantum import CircuitToEinsum
    
    simulator = qsimcirq.QSimSimulator()
    
    # See https://quantumai.google/cirq/experiments/textbook_algorithms
    def make_qft(qubits):
        """Generator for the QFT on a list of qubits."""
        qreg = list(qubits)
        while len(qreg) > 0:
            q_head = qreg.pop(0)
            yield cirq.H(q_head)
            for i, qubit in enumerate(qreg):
                yield (cirq.CZ ** (1 / 2 ** (i + 1)))(qubit, q_head)
    
    
    def simulate_and_measure(nqubits):
        qubits = cirq.LineQubit.range(nqubits)
        qft = cirq.Circuit(make_qft(qubits))
    
        myconverter = CircuitToEinsum(qft, backend=cupy)
    
        tic = time.time()
        simulator.simulate(qft)
        elapsed_qsim = time.time() - tic
        out = {"qsim": elapsed_qsim}
    
        # CUDA expectation
        pauli_string = {qubits[0]: 'Z'}
        expression, operands = myconverter.expectation(pauli_string, lightcone=True)
        tic = time.time()
        contract(expression, *operands)
        elapsed = time.time() - tic
        out["cu_expectation"] = elapsed
    
        # CUDA Batched amplitudes
        # Fix everything but last qubit
        fixed_states = "0" * (nqubits - 1)
        fixed_index = tuple(map(int, fixed_states))
        num_fixed = len(fixed_states)
        fixed = dict(zip(myconverter.qubits[:num_fixed], fixed_states))
        expression, operands = myconverter.batched_amplitudes(fixed)
        tic = time.time()
        contract(expression, *operands)
        elapsed = time.time() - tic
        out["cu_batched"] = elapsed
    
        return out
    
    for i in [10, 15, 20, 25, 30]:
        print(i, simulate_and_measure(i))
    

    Output (the numbers are elapsed in seconds; 10, 15, ... are number of qubits for QFT):

    10 {'qsim': 0.9677999019622803, 'cu_expectation': 0.29337143898010254, 'cu_batched': 0.07590365409851074}
    15 {'qsim': 0.023270368576049805, 'cu_expectation': 0.019628524780273438, 'cu_batched': 0.3687710762023926}
    20 {'qsim': 0.03504538536071777, 'cu_expectation': 0.023822784423828125, 'cu_batched': 0.9347813129425049}
    25 {'qsim': 0.14235782623291016, 'cu_expectation': 0.02486586570739746, 'cu_batched': 2.39030122756958}
    30 {'qsim': 3.4044816493988037, 'cu_expectation': 0.028923749923706055, 'cu_batched': 4.6819908618927}
    35 {'cu_expectation': 1.0615959167480469, 'cu_batched': 10.964831829071045}
    40 {'cu_expectation': 0.03381609916687012, 'cu_batched': 82.43729209899902}
    

    I wasn't able to go to 35 qubits for qsim, because I got CUDA OOM for qsim. The much reduced memory usage alone is sufficient to prefer cuQuantum for this use case.

    But, I was hoping that batched_amplitudes is going to be faster than a full statevector simulation, because some qubits are fixed. But it doesn't seem to be the case. I have also tried reduced_density_matrix (not shown, so that the code snippet is short). The only one that is consistently fast is expectation. I wonder if I did it wrongly?

    opened by rht 2
  • Why QSimOptions is throwing error when use_sampler disable_gpu are used ?

    Why QSimOptions is throwing error when use_sampler disable_gpu are used ?

    `TypeError Traceback (most recent call last) Cell In [9], line 2 1 ngpus = 1 ----> 2 qsim_options = qsimcirq.QSimOptions( 3 max_fused_gate_size = 2 4 , cpu_threads = 1 5 , gpu_mode = ngpus 6 , use_sampler = True 7 , disable_gpu = False 8 ) 9 qsim_simulator = qsimcirq.QSimSimulator(qsim_options)

    TypeError: init() got an unexpected keyword argument 'use_sampler'`

    It's working fine when these 2 options are removed. I am using windows wsl to run it locally using conda installation. The documentation clearly has these options. Link to QSimOptions

    opened by ShashiQubit 1
  • cirq + custatevec on multiple GPUs

    cirq + custatevec on multiple GPUs

    Hi,

    I am using cuQuantum Appliance 22.07-Cirq to experiment with cirq + custatevec simulator. I am able to run up to 32 qubit simulations with single NVidia A100 40GB gpu as expected.

    However I am having trouble getting it to run on multiple GPUs. I am using QSimOptions.gpu_mode = 2 to achieve this as explained in cuquantum docs but I only see one gpu being used thourgh nvidia-smi command, and I run out of memory for 33 qubits.

    here is a minimal reproducer:

    import cirq
    import qsimcirq
    
    def load_test(num_gpus = 1, depth = 4, num_qubits = 30):
    	circuit = cirq.testing.random_circuit(
    		qubits = num_qubits,
    		n_moments = depth,
    		op_density = 1.0,
    		random_state = 1)
    	num_gates = len(list(circuit.all_operations()))
    	options = {"gpu_mode": num_gpus, "n_subsvs": num_gpus}
    	qsim_simulator = qsimcirq.QSimSimulator(options)
    	result = qsim_simulator.simulate(circuit)
    	print (f"DONE with qubits: {num_qubits} \t gates: {num_gates} \t depth: {depth} \t")
    
    load_test(num_gpus = 2, depth = 2, num_qubits = 30) # uses  ~8GB memory on 1 gpu
    load_test(num_gpus = 2, depth = 2, num_qubits = 32) # uses ~32GB memory on 1 gpu
    load_test(num_gpus = 2, depth = 2, num_qubits = 33) # CUDA error: out of memory vector_mgpu.h 116
    

    I have 2 NVidia A100 gpu's on my machine and here is the output of nvidia-smi for 32 qubit case:

    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 510.47.03    Driver Version: 510.47.03    CUDA Version: 11.6     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |                               |                      |               MIG M. |
    |===============================+======================+======================|
    |   0  NVIDIA A100-SXM...  Off  | 00000000:00:04.0 Off |                    0 |
    | N/A   35C    P0    82W / 400W |  33561MiB / 40960MiB |     23%      Default |
    |                               |                      |             Disabled |
    +-------------------------------+----------------------+----------------------+
    |   1  NVIDIA A100-SXM...  Off  | 00000000:00:05.0 Off |                    0 |
    | N/A   43C    P0    75W / 400W |      2MiB / 40960MiB |      0%      Default |
    |                               |                      |             Disabled |
    +-------------------------------+----------------------+----------------------+
    
    +-----------------------------------------------------------------------------+
    | Processes:                                                                  |
    |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
    |        ID   ID                                                   Usage      |
    |=============================================================================|
    |    0   N/A  N/A     26614      C   python                          33559MiB |
    +-----------------------------------------------------------------------------+
    

    Am I missing something?

    opened by hthayko 0
Releases(v22.11.0)
  • v22.11.0(Nov 30, 2022)

  • v22.07.1(Aug 4, 2022)

  • v22.07.0(Jul 20, 2022)

  • v22.05.0(May 23, 2022)

  • v22.03.0(Mar 25, 2022)

    First general access release of cuQuantum. Documentation and full release notes for all versions are located here: https://docs.nvidia.com/cuda/cuquantum/index.html

    Source code(tar.gz)
    Source code(zip)
Owner
NVIDIA Corporation
NVIDIA Corporation
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR. Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi

336 Dec 25, 2022
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
Angle data is a simple data type.

angledat Angle data is a simple data type. Installing + using Put angledat.py in the main dir of your project. Import it and use. Comments Comments st

1 Jan 05, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022