Keras implementations of Generative Adversarial Networks.

Overview

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as a collaborator send me an email at [email protected].

Keras-GAN

Collection of Keras implementations of Generative Adversarial Networks (GANs) suggested in research papers. These models are in some cases simplified versions of the ones ultimately described in the papers, but I have chosen to focus on getting the core ideas covered instead of getting every layer configuration right. Contributions and suggestions of GAN varieties to implement are very welcomed.

See also: PyTorch-GAN

Table of Contents

Installation

$ git clone https://github.com/eriklindernoren/Keras-GAN
$ cd Keras-GAN/
$ sudo pip3 install -r requirements.txt

Implementations

AC-GAN

Implementation of Auxiliary Classifier Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1610.09585

Example

$ cd acgan/
$ python3 acgan.py

Adversarial Autoencoder

Implementation of Adversarial Autoencoder.

Code

Paper: https://arxiv.org/abs/1511.05644

Example

$ cd aae/
$ python3 aae.py

BiGAN

Implementation of Bidirectional Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1605.09782

Example

$ cd bigan/
$ python3 bigan.py

BGAN

Implementation of Boundary-Seeking Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1702.08431

Example

$ cd bgan/
$ python3 bgan.py

CC-GAN

Implementation of Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1611.06430

Example

$ cd ccgan/
$ python3 ccgan.py

CGAN

Implementation of Conditional Generative Adversarial Nets.

Code

Paper:https://arxiv.org/abs/1411.1784

Example

$ cd cgan/
$ python3 cgan.py

Context Encoder

Implementation of Context Encoders: Feature Learning by Inpainting.

Code

Paper: https://arxiv.org/abs/1604.07379

Example

$ cd context_encoder/
$ python3 context_encoder.py

CoGAN

Implementation of Coupled generative adversarial networks.

Code

Paper: https://arxiv.org/abs/1606.07536

Example

$ cd cogan/
$ python3 cogan.py

CycleGAN

Implementation of Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1703.10593

Example

$ cd cyclegan/
$ bash download_dataset.sh apple2orange
$ python3 cyclegan.py

DCGAN

Implementation of Deep Convolutional Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1511.06434

Example

$ cd dcgan/
$ python3 dcgan.py

DiscoGAN

Implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1703.05192

Example

$ cd discogan/
$ bash download_dataset.sh edges2shoes
$ python3 discogan.py

DualGAN

Implementation of DualGAN: Unsupervised Dual Learning for Image-to-Image Translation.

Code

Paper: https://arxiv.org/abs/1704.02510

Example

$ cd dualgan/
$ python3 dualgan.py

GAN

Implementation of Generative Adversarial Network with a MLP generator and discriminator.

Code

Paper: https://arxiv.org/abs/1406.2661

Example

$ cd gan/
$ python3 gan.py

InfoGAN

Implementation of InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets.

Code

Paper: https://arxiv.org/abs/1606.03657

Example

$ cd infogan/
$ python3 infogan.py

LSGAN

Implementation of Least Squares Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1611.04076

Example

$ cd lsgan/
$ python3 lsgan.py

Pix2Pix

Implementation of Image-to-Image Translation with Conditional Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1611.07004

Example

$ cd pix2pix/
$ bash download_dataset.sh facades
$ python3 pix2pix.py

PixelDA

Implementation of Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks.

Code

Paper: https://arxiv.org/abs/1612.05424

MNIST to MNIST-M Classification

Trains a classifier on MNIST images that are translated to resemble MNIST-M (by performing unsupervised image-to-image domain adaptation). This model is compared to the naive solution of training a classifier on MNIST and evaluating it on MNIST-M. The naive model manages a 55% classification accuracy on MNIST-M while the one trained during domain adaptation gets a 95% classification accuracy.

$ cd pixelda/
$ python3 pixelda.py
Method Accuracy
Naive 55%
PixelDA 95%

SGAN

Implementation of Semi-Supervised Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1606.01583

Example

$ cd sgan/
$ python3 sgan.py

SRGAN

Implementation of Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network.

Code

Paper: https://arxiv.org/abs/1609.04802

Example

$ cd srgan/
<follow steps at the top of srgan.py>
$ python3 srgan.py

WGAN

Implementation of Wasserstein GAN (with DCGAN generator and discriminator).

Code

Paper: https://arxiv.org/abs/1701.07875

Example

$ cd wgan/
$ python3 wgan.py

WGAN GP

Implementation of Improved Training of Wasserstein GANs.

Code

Paper: https://arxiv.org/abs/1704.00028

Example

$ cd wgan_gp/
$ python3 wgan_gp.py

Owner
Erik Linder-Norén
ML engineer at Apple. Excited about machine learning, basketball and building things.
Erik Linder-Norén
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi

THUDM 540 Dec 30, 2022
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa

Wanyu Du 18 Dec 29, 2022
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
MANO hand model porting for the GraspIt simulator

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp Porting the MANO hand model to GraspIt! simulator Yana Hasson, Gül Varol, D

Lucas Wohlhart 10 Feb 08, 2022
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis

This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.

Ziqi Yuan 10 Sep 30, 2022
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
BEGAN in PyTorch

BEGAN in PyTorch This project is still in progress. If you are looking for the working code, use BEGAN-tensorflow. Requirements Python 2.7 Pillow tqdm

Taehoon Kim 260 Dec 07, 2022