Datasets for new state-of-the-art challenge in disentanglement learning

Overview

High resolution disentanglement datasets

This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for controllable generation in terms of image resolution, photorealism, and richness of style factors, as compared to existing disentanglement datasets.

Falor3D

The Falcor3D dataset consists of 233,280 images based on the 3D scene of a living room, where each image has a resolution of 1024x1024. The meta code corresponds to all possible combinations of 7 factors of variation:

  • lighting_intensity (5)
  • lighting_x-dir (6)
  • lighting_y-dir (6)
  • lighting_z-dir (6)
  • camera_x-pos (6)
  • camera_y-pos (6)
  • camera_z-pos (6)

Note that the number m behind each factor represents that the factor has m possible values, uniformly sampled in the normalized range of variations [0, 1].

Each image has as filename padded_index.png where

index = lighting_intensity * 46656 + lighting_x-dir * 7776 + lighting_y-dir * 1296 + 
lighting_z-dir * 216 + camera_x-pos * 36 + camera_y-pos * 6 + camera_z-pos

padded_index = index padded with zeros such that it has 6 digits.

To see the Falcor3D images by varying each factor of variation individually, you can run

python dataset_demo.py --dataset Falor3D

and the results are saved in the examples/falcor3d_samples folder.

You can also check out the Falcor3D images here: falcor3d_samples_demo, which includes all the ground-truth latent traversals.

Isaac3D

The Isaac3D dataset consists of 737,280 images, based on the 3D scene of a kitchen, where each image has a resolution of 512x512. The meta code corresponds to all possible combinations of 9 factors of variation:

  • object_shape (3)
  • object_scale (4)
  • camera_height (4)
  • robot_x-movement (8)
  • robot_y-movement (5)
  • lighting_intensity (4)
  • lighting_y-dir (6)
  • object_color (4)
  • wall_color (4)

Similarly, the number m behind each factor represents that the factor has m possible values, uniformly sampled in the normalized range of variations [0, 1].

Each image has as filename padded_index.png where

index = object_shape * 245760 + object_scale * 30720 + camera_height * 6144 + 
robot_x-movement * 1536 + robot_y-movement * 384 + lighting_intensity * 96 + 
lighting_y-dir * 16 + object_color * 4 + wall color

padded_index = index padded with zeros such that it has 6 digits.

To see the Isaac3D images by varying each factor of variation individually, you can run

python dataset_demo.py --dataset Isaac3D

and the results are saved in the examples/isaac3d_samples folder.

You can also check out the Isaac3D images here: isaac3d_samples_demo, which includes all the ground-truth latent traversals.

Links to datasets

The two datasets can be downloaded from Google Drive:

  • Falcor3D (98 GB): link
  • Isaac3D (190 GB): link

Besides, we also provide a downsampled version (resolution 128x128) of the two datasets:

  • Falcor3D_128x128 (3.7 GB): link
  • Isaac3D_128x128 (13 GB): link

License

This work is licensed under a Creative Commons Attribution 4.0 International License by NVIDIA Corporation (https://creativecommons.org/licenses/by/4.0/).

Owner
NVIDIA Research Projects
NVIDIA Research Projects
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

0 Apr 02, 2021
Joint deep network for feature line detection and description

SOLD² - Self-supervised Occlusion-aware Line Description and Detection This repository contains the implementation of the paper: SOLD² : Self-supervis

Computer Vision and Geometry Lab 427 Dec 27, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022