A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Overview

Welcome to Carbon Insight

Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other participants in the community. Our mission is to visualize the world's most cutting-edge research on carbon emission, carbon sink, and carbon flux to generate insights of carbon and society. We strive to accelerate climate studies and global climate actions with computational innovations.

With the global consensus of the 1.5°C goal of the Paris Agreement, the world has a goal to achieve carbon neutralization by 2050. This ambitious goal requires collaboration from all fields. To tackle the climate crisis together, we must first understand where carbon comes from and where it goes.

With Carbon Insight, you can work with the world's most updated carbon-related data and generate insights as you wish.

For example, in our first release, you can leverage the dataset provided by Carbon Monitor, to have a daily anthropogenic CO2 emission estimation by country and sector since January 2019.

Carbon Insight also lets you observe and track correlations between global carbon emissions and socioeconomic factors such as COVID-19 and GDP.

We aim to achieve the following goals:

  • Using data visualization to support scientific research, allowing researchers to identify problems and ideas that are not easily seen in conventional ways
  • Acting as a tool that allows all users to explore carbon neutralization pathways under different scenarios and with technology innovations
  • Illustrating data and science of carbon neutralization for the non-professionals to raise public awareness towards climate change

How to use

Using Carbon Monitor, a dataset providing daily estimations of CO2 emissions by country/sector, as an example, we demonstrate two ways to do analysis with carbon-related data:

  • interactable Power BI reports, and
  • code examples

If you want a straightforward view of a global emission map by country, you can download our Power BI reports and filter results based on your interest.

(New to Power BI? Check the instructions on how to download the Power BI app and how to explore with dashboards, reports, and apps in Power BI.)

If you have some basic coding knowledge and want to get your hands dirty customizing your own analysis or combining different datasets to scale your research, go to our Jupyter Notebook Tutorials and walk through the code examples we provide on how to acquire, process and visualize carbon-related data.

Release Note

2022/01/06 release:

Contributors

Carbon Insight started with a research collaboration between MSRA and Zhu Liu's team from Department of Earth System Science, Tsinghua University. We share a vision of demonstrating efforts towards carbon neutralization through visualization, benchmarking, and insightful analysis with both global consistency and local detail. Our collaboration goes wider to more areas of carbon footprint monitoring and deeper to using advanced machine learning algorithms to assist the modeling of carbon flux.

We're a fully open project and welcome contributors or collaborators from the whole community, if you wish to contribute to the project or raise suggestions, contact us at [email protected].

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Andrew 70 Dec 12, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022