Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Overview

License CC BY-NC-SA 4.0 Python 2.7

Geometry-Aware Learning of Maps for Camera Localization

This is the PyTorch implementation of our CVPR 2018 paper

"Geometry-Aware Learning of Maps for Camera Localization" - CVPR 2018 (Spotlight). Samarth Brahmbhatt, Jinwei Gu, Kihwan Kim, James Hays, and Jan Kautz

A four-minute video summary (click below for the video)

mapnet

Citation

If you find this code useful for your research, please cite our paper

@inproceedings{mapnet2018,
  title={Geometry-Aware Learning of Maps for Camera Localization},
  author={Samarth Brahmbhatt and Jinwei Gu and Kihwan Kim and James Hays and Jan Kautz},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2018}
}

Table of Contents

Documentation

Setup

MapNet uses a Conda environment that makes it easy to install all dependencies.

  1. Install miniconda with Python 2.7.

  2. Create the mapnet Conda environment: conda env create -f environment.yml.

  3. Activate the environment: conda activate mapnet_release.

  4. Note that our code has been tested with PyTorch v0.4.1 (the environment.yml file should take care of installing the appropriate version).

Data

We support the 7Scenes and Oxford RobotCar datasets right now. You can also write your own PyTorch dataloader for other datasets and put it in the dataset_loaders directory. Refer to this README file for more details.

The datasets live in the data/deepslam_data directory. We provide skeletons with symlinks to get you started. Let us call your 7Scenes download directory 7SCENES_DIR and your main RobotCar download directory (in which you untar all the downloads from the website) ROBOTCAR_DIR. You will need to make the following symlinks:

cd data/deepslam_data && ln -s 7SCENES_DIR 7Scenes && ln -s ROBOTCAR_DIR RobotCar_download


Special instructions for RobotCar: (only needed for RobotCar data)

  1. Download this fork of the dataset SDK, and run cd scripts && ./make_robotcar_symlinks.sh after editing the ROBOTCAR_SDK_ROOT variable in it appropriately.

  2. For each sequence, you need to download the stereo_centre, vo and gps tar files from the dataset website (more details in this comment).

  3. The directory for each 'scene' (e.g. full) has .txt files defining the train/test split. While training MapNet++, you must put the sequences for self-supervised learning (dataset T in the paper) in the test_split.txt file. The dataloader for the MapNet++ models will use both images and ground-truth pose from sequences in train_split.txt and only images from the sequences in test_split.txt.

  4. To make training faster, we pre-processed the images using scripts/process_robotcar_images.py. This script undistorts the images using the camera models provided by the dataset, and scales them such that the shortest side is 256 pixels.


Running the code

Demo/Inference

The trained models for all experiments presented in the paper can be downloaded here. The inference script is scripts/eval.py. Here are some examples, assuming the models are downloaded in scripts/logs. Please go to the scripts folder to run the commands.

7_Scenes

  • MapNet++ with pose-graph optimization (i.e., MapNet+PGO) on heads:
$ python eval.py --dataset 7Scenes --scene heads --model mapnet++ \
--weights logs/7Scenes_heads_mapnet++_mapnet++_7Scenes/epoch_005.pth.tar \
--config_file configs/pgo_inference_7Scenes.ini --val --pose_graph
Median error in translation = 0.12 m
Median error in rotation    = 8.46 degrees

7Scenes_heads_mapnet+pgo

  • For evaluating on the train split remove the --val flag

  • To save the results to disk without showing them on screen (useful for scripts), add the --output_dir ../results/ flag

  • See this README file for more information on hyper-parameters and which config files to use.

  • MapNet++ on heads:

$ python eval.py --dataset 7Scenes --scene heads --model mapnet++ \
--weights logs/7Scenes_heads_mapnet++_mapnet++_7Scenes/epoch_005.pth.tar \
--config_file configs/mapnet.ini --val
Median error in translation = 0.13 m
Median error in rotation    = 11.13 degrees
  • MapNet on heads:
$ python eval.py --dataset 7Scenes --scene heads --model mapnet \
--weights logs/7Scenes_heads_mapnet_mapnet_learn_beta_learn_gamma/epoch_250.pth.tar \
--config_file configs/mapnet.ini --val
Median error in translation = 0.18 m
Median error in rotation    = 13.33 degrees
  • PoseNet (CVPR2017) on heads:
$ python eval.py --dataset 7Scenes --scene heads --model posenet \
--weights logs/7Scenes_heads_posenet_posenet_learn_beta_logq/epoch_300.pth.tar \
--config_file configs/posenet.ini --val
Median error in translation = 0.19 m
Median error in rotation    = 12.15 degrees

RobotCar

  • MapNet++ with pose-graph optimization on loop:
$ python eval.py --dataset RobotCar --scene loop --model mapnet++ \
--weights logs/RobotCar_loop_mapnet++_mapnet++_RobotCar_learn_beta_learn_gamma_2seq/epoch_005.pth.tar \
--config_file configs/pgo_inference_RobotCar.ini --val --pose_graph
Mean error in translation = 6.74 m
Mean error in rotation    = 2.23 degrees

RobotCar_loop_mapnet+pgo

  • MapNet++ on loop:
$ python eval.py --dataset RobotCar --scene loop --model mapnet++ \
--weights logs/RobotCar_loop_mapnet++_mapnet++_RobotCar_learn_beta_learn_gamma_2seq/epoch_005.pth.tar \
--config_file configs/mapnet.ini --val
Mean error in translation = 6.95 m
Mean error in rotation    = 2.38 degrees
  • MapNet on loop:
$ python eval.py --dataset RobotCar --scene loop --model mapnet \
--weights logs/RobotCar_loop_mapnet_mapnet_learn_beta_learn_gamma/epoch_300.pth.tar \
--config_file configs/mapnet.ini --val
Mean error in translation = 9.84 m
Mean error in rotation    = 3.96 degrees

Train

The executable script is scripts/train.py. Please go to the scripts folder to run these commands. For example:

  • PoseNet on chess from 7Scenes: python train.py --dataset 7Scenes --scene chess --config_file configs/posenet.ini --model posenet --device 0 --learn_beta --learn_gamma

train.png

  • MapNet on chess from 7Scenes: python train.py --dataset 7Scenes --scene chess --config_file configs/mapnet.ini --model mapnet --device 0 --learn_beta --learn_gamma

  • MapNet++ is finetuned on top of a trained MapNet model: python train.py --dataset 7Scenes --checkpoint <trained_mapnet_model.pth.tar> --scene chess --config_file configs/mapnet++_7Scenes.ini --model mapnet++ --device 0 --learn_beta --learn_gamma

For example, we can train MapNet++ model on heads from a pretrained MapNet model:

$ python train.py --dataset 7Scenes \
--checkpoint logs/7Scenes_heads_mapnet_mapnet_learn_beta_learn_gamma/epoch_250.pth.tar \
--scene heads --config_file configs/mapnet++_7Scenes.ini --model mapnet++ \
--device 0 --learn_beta --learn_gamma

For MapNet++ training, you will need visual odometry (VO) data (or other sensory inputs such as noisy GPS measurements). For 7Scenes, we provided the preprocessed VO computed with the DSO method. For RobotCar, we use the provided stereo_vo. If you plan to use your own VO data (especially from a monocular camera) for MapNet++ training, you will need to first align the VO with the world coordinate (for rotation and scale). Please refer to the "Align VO" section below for more detailed instructions.

The meanings of various command-line parameters are documented in scripts/train.py. The values of various hyperparameters are defined in a separate .ini file. We provide some examples in the scripts/configs directory, along with a README file explaining some hyper-parameters.

If you have visdom = yes in the config file, you will need to start a Visdom server for logging the training progress:

python -m visdom.server -env_path=scripts/logs/.


Network Attention Visualization

Calculates the network attention visualizations and saves them in a video

  • For the MapNet model trained on chess in 7Scenes:
$ python plot_activations.py --dataset 7Scenes --scene chess
--weights <filename.pth.tar> --device 1 --val --config_file configs/mapnet.ini
--output_dir ../results/

Check here for an example video of computed network attention of PoseNet vs. MapNet++.


Other Tools

Align VO to the ground truth poses

This has to be done before using VO in MapNet++ training. The executable script is scripts/align_vo_poses.py.

  • For the first sequence from chess in 7Scenes: python align_vo_poses.py --dataset 7Scenes --scene chess --seq 1 --vo_lib dso. Note that alignment for 7Scenes needs to be done separately for each sequence, and so the --seq flag is needed

  • For all 7Scenes you can also use the script align_vo_poses_7scenes.sh The script stores the information at the proper location in data

Mean and stdev pixel statistics across a dataset

This must be calculated before any training. Use the scripts/dataset_mean.py, which also saves the information at the proper location. We provide pre-computed values for RobotCar and 7Scenes.

Calculate pose translation statistics

Calculates the mean and stdev and saves them automatically to appropriate files python calc_pose_stats.py --dataset 7Scenes --scene redkitchen This information is needed to normalize the pose regression targets, so this script must be run before any training. We provide pre-computed values for RobotCar and 7Scenes.

Plot the ground truth and VO poses for debugging

python plot_vo_poses.py --dataset 7Scenes --scene heads --vo_lib dso --val. To save the output instead of displaying on screen, add the --output_dir ../results/ flag

Process RobotCar GPS

The scripts/process_robotcar_gps.py script must be run before using GPS for MapNet++ training. It converts the csv file into a format usable for training.

Demosaic and undistort RobotCar images

This is advisable to do beforehand to speed up training. The scripts/process_robotcar_images.py script will do that and save the output images to a centre_processed directory in the stereo directory. After the script finishes, you must rename this directory to centre so that the dataloader uses these undistorted and demosaiced images.

FAQ

Collection of issues and resolution comments that might be useful:

License

Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).

Owner
NVIDIA Research Projects
NVIDIA Research Projects
for taichi voxel-challange event

Taichi Voxel Challenge Figure: result of python3 example6.py. Please replace the image above (demo.jpg) with yours, so that other people can immediate

Liming Xu 20 Nov 26, 2022
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
labelpix is a graphical image labeling interface for drawing bounding boxes

Welcome to labelpix 👋 labelpix is a graphical image labeling interface for drawing bounding boxes. 🏠 Homepage Install pip install -r requirements.tx

schissmantics 26 May 24, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Open Rule Induction This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021. Abstract Rule

Xingran Chen 16 Nov 14, 2022
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022