Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Overview

Mining the Social Web, 3rd Edition

The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Amazon and Safari Books Online.

The notebooks folder of this repository contains the latest bug-fixed sample code used in the book chapters.

Quickstart

Binder

The easiest way to start playing with code right away is to use Binder. Binder is a service that takes a GitHub repository containing Jupyter Notebooks and spins up a cloud-based server to run them. You can start experimenting with the code without having to install anything on your machine. Click the badge above, or follow this link to get started right away.

NOTE: Binder will not save your files on its servers. During your next session, it will be a completely fresh instantiation of this repository. If you need a more persistent solution, consider running the code on your own machine.

Getting started on your own machine using Docker

  1. Install Docker
  2. Install repo2docker: pip install jupyter-repo2docker
  3. From the command line:
repo2docker https://github.com/mikhailklassen/Mining-the-Social-Web-3rd-Edition

This will create a Docker container from the repository directly. It takes a while to finish building the container, but once it's done, you will see a URL printed to screen. Copy and paste the URL into your browser.

A longer set of instructions can be found here.

Getting started on your own machine from source

If you are familiar with git and have a git client installed on your machine, simply clone the repository to your own machine. However, it is up to you to install all the dependencies for the repository. The necessary Python libraries are detailed in the requirements.txt file. The other requirements are detailed in the Requirements section below.

If you prefer not to use a git client, you can instead download a zip archive directly from GitHub. The only disadvantage of this approach is that in order to synchronize your copy of the code with any future bug fixes, you will need to download the entire repository again. You are still responsible for installing any dependencies yourself.

Install all the prerequisites using pip:

pip install -r requirements.txt

Once you're done, step into the notebooks directory and launch the Jupyter notebook server:

jupyter notebook

Side note on MongoDB

If you wish to complete all the examples in Chapter 9, you will need to install MongoDB. We do not provide support on how to do this. This is for more advanced users and is really only relevant to a few examples in Chapter 9.

Contributing

There are several ways in which you can contribute to the project. If you discover a bug in any of the code, the first thing to do is to create a new issue under the Issues tab of this repository. If you are a developer and would like to contribute a bug fix, please feel free to fork the repository and submit a pull request.

The code is provided "as-is" and we make no guarantees that it is bug-free. Keep in mind that we access the APIs of various social media platforms and their APIs are subject to change. Since the start of this project, various social media platforms have tightened the permissions on their platform. Getting full use out of all the code in this book may require submitting an application the social media platform of your choice for approval. Despite these restrictions, we hope that the code still provides plenty of flexibility and opportunities to go deeper.

Owner
Mikhail Klassen
Co-Founder and CTO at @PaladinAI. PhD, astrophysics. I specialize in machine learning, AI, data mining, and data visualization.
Mikhail Klassen
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
Small little script to scrape, parse and check for active tor nodes. Can be used as proxies.

TorScrape TorScrape is a small but useful script made in python that scrapes a website for active tor nodes, parse the html and then save the nodes in

5 Dec 04, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
[TIP2020] Adaptive Graph Representation Learning for Video Person Re-identification

Introduction This is the PyTorch implementation for Adaptive Graph Representation Learning for Video Person Re-identification. Get started git clone h

WuYiming 41 Dec 12, 2022