Nateve compiler developed with python.

Overview

Adam

Adam is a Nateve Programming Language compiler developed using Python.

Nateve

Nateve is a new general domain programming language open source inspired by languages like Python, C++, JavaScript, and Wolfram Mathematica.

Nateve is an compiled language. Its first compiler, Adam, is fully built using Python 3.8.

Options of command line (Nateve)

  1. build: Transpile Nateve source code to Python 3.8
  2. run: Run Nateve source code
  3. compile: Compile Nateve source code to an executable file (.exe)
  4. run-init-loop: Run Nateve source code with an initial source and a loop source
  5. set-time-unit: Set Adam time unit to seconds or miliseconds (default: milisecond)
  6. -v: Activate verbose mode

Nateve Tutorial

In this tutorial, we will learn how to use Nateve step by step.

Step 1: Create a new Nateve project

$ cd my-project
$ COPY CON main.nateve

Hello World program

print("Hello, World!")

Is prime? program

def is_prime(n) {
    if n == 1 {
        return False
    }
    for i in range(2, n) {
        if n % i == 0 {
            return False
        }
    }
    return True
}

n = intput("Enter a number: ")

if is_prime(n) {
    print("It is a prime number.")
}
else {
    print("It is not a prime number.")
}

Comments

If you want to comment your code, you can use:

~ This is a single line comment ~

~
    And this a multiline comment
~

Under construction...

Let Statements

This language does not use variables. Instead of variables, you can only declare static values.

For declaring a value, you must use let and give it a value. For example:

let a = 1        -- Interger
let b = 1.0      -- Float
let c = "string" -- String
let d = true     -- Boolean
let e = [1,2,3]  -- List
let f = (1,2)    -- Tuple
...             

SigmaF allows data type as Integer, Float, Boolean, and String.

Lists

The Lists allow to use all the data types before mentioned, as well as lists and functions.

Also, they allow to get an item through the next notation:

let value_list = [1,2,3,4,5,6,7,8,9]
value_list[0]       -- Output: 1
value_list[0, 4]    -- Output: [1,2,3,4]
value_list[0, 8, 2] -- Output: [1, 3, 5, 7]

The struct of List CAll is example_list[<Start>, <End>, <Jump>]

Tuples

The tuples are data structs of length greater than 1. Unlike lists, they allow the following operations:

(1,2) + (3,4)      -- Output: (4,6)
(4,6,8) - (3,4,5)  -- Output: (1,2,3)
(0,1) == (0,1)     -- Output: true
(0,1) != (1,3)     -- Output: true

To obtain the values of a tuple, you must use the same notation of the list. But this data structure does not allow ranges like the lists (only you can get one position of a tuple).

E.g.

let t = (1,2,3,4,5,6)
t[1] -- Output: 2
t[5] -- Output: 6

And so on.

Operators

Warning: SigmaF have Static Typing, so it does not allow the operation between different data types.

These are operators:

Operator Symbol
Plus +
Minus -
Multiplication *
Division /
Modulus %
Exponential **
Equal ==
Not Equal !=
Less than <
Greater than >
Less or equal than <=
Greater or equal than >=
And &&
Or ||

The operator of negation for Boolean was not included. You can use the not() function in order to do this.

Functions

For declaring a function, you have to use the next syntax:

let example_function = fn <Name Argument>::<Argument Type> -> <Output Type> {
    => <Return Value>
}  

(For return, you have to use the => symbol)

For example:

let is_prime_number = fn x::int, i::int -> bool {
    if x <= 1 then {=> false;}
    if x == i then {=> true;}
    if (x % i) == 0 then {=> false;}
    => is_prime_number(x, i+1);
}

printLn(is_prime_number(11, 2)) -- Output: true

Conditionals

Regarding the conditionals, the syntax structure is:

if <Condition> then {
    <Consequence>
}
else{
    <Other Consequence>
}

For example:

if x <= 1 || x % i == 0 then {
    false;
}
if x == i then {
    true;
}
else {
    false;
}

Some Examples

-- Quick Sort
let qsort = fn l::list -> list {

	if (l == []) then {=> [];}
	else {
		let p = l[0];
		let xs = tail(l);
		
		let c_lesser = fn q::int -> bool {=> (q < p)}
		let c_greater = fn q::int -> bool {=> (q >= p)}

		=> qsort(filter(c_lesser, xs)) + [p] + qsort(filter(c_greater, xs));
	}
}

-- Filter
let filter = fn c::function, l::list -> list {
	if (l == []) then {=> [];} 

    => if (c(l[0])) then {[l[0]]} else {[]} +  filter(c, tail(l));
}

-- Map
let map = fn f::function, l::list -> list {
	if (l==[]) then {=> [];}
	
	=> [f(l[0])] + map(f, tail(l));
}

To know other examples of the implementations, you can go to e.g.


Feedback

I would really appreciatte your feedback. You can submit a new issue, or reach out me on Twitter.

Contribute

This is an opensource project, everyone can contribute and become a member of the community of SigmaF.

Why be a member of the SigmaF community?

1. A simple and understandable code

The source code of the interpreter is made with Python 3.8, a language easy to learn, also good practices are a priority for this project.

2. A great potencial

This project has a great potential to be the next programming language of the functional paradigm, to development the AI, and to development new metaheuristics.

3. Scalable development

One of the mains approaches of this project is the implementation of TDD from the beggining and the development of new features, which allows scalability.

4. Simple and power

One of the main purposes of this programming language is to create an easy-to-learn functional language, which at the same time is capable of processing large amounts of data safely and allows concurrence and parallelism.

5. Respect for diversity

Everybody is welcome, it does not matter your genre, experience or nationality. Anyone with enthusiasm can be part of this project. Anyone from the most expert to the that is beginning to learn about programming, marketing, design, or any career.

How to start contributing?

There are multiply ways to contribute, since sharing this project, improving the brand of SigmaF, helping to solve the bugs or developing new features and making improves to the source code.

  • Share this project: You can put your star in the repository, or talk about this project. You can use the hashtag #SigmaF in Twitter, LinkedIn or any social network too.

  • Improve the brand of SigmaF: If you are a marketer, designer or writer, and you want to help, you are welcome. You can contact me on Twitter like @fabianmativeal if you are interested on doing it.

  • Help to solve the bugs: if you find one bug notify me an issue. On this we can all improve this language.

  • Developing new features: If you want to develop new features or making improvements to the project, you can do a fork to the dev branch (here are the ultimate develops) working there, and later do a pull request to dev branch in order to update SigmaF.

You might also like...
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Python library for processing Chinese text

SnowNLP: Simplified Chinese Text Processing SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob

A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

A python wrapper around the ZPar parser for English.

NOTE This project is no longer under active development since there are now really nice pure Python parsers such as Stanza and Spacy. The repository w

💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Python interface for converting Penn Treebank trees to Stanford Dependencies and Universal Depenencies

PyStanfordDependencies Python interface for converting Penn Treebank trees to Universal Dependencies and Stanford Dependencies. Example usage Start by

Comments
  • [Enhancement] Nateve Vectors don't allow non-numeric datatypes

    [Enhancement] Nateve Vectors don't allow non-numeric datatypes

    Vectors just allow to use numbers (int/float) into them, because Vectors are redifinening Python Built-in lists in the middle code generation process. A possible solution is to join Vectors and Matrices into a Linear datatypes with the syntax opener tag "$", and the to make independent the python lists

    opened by eanorambuena 0
  • [Bug] Double execution of the modules in assembling process

    [Bug] Double execution of the modules in assembling process

    We need to resolve the double execution of the modules in assembling process.

    The last Non Double Execution Patch has been deprecated because it did generate bugs of type: - Code segmentation in the driver_file

    bug help wanted 
    opened by eanorambuena 0
Releases(0.0.3)
Owner
Nateve
Repositories related to the Nateve Programming Language
Nateve
Code for using and evaluating SpanBERT.

SpanBERT This repository contains code and models for the paper: SpanBERT: Improving Pre-training by Representing and Predicting Spans. If you prefer

Meta Research 798 Dec 30, 2022
source code for paper: WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

WhiteningBERT Source code and data for paper WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach. Preparation git clone https://github.com

49 Dec 17, 2022
【原神】自动演奏风物之诗琴的程序

疯物之诗琴 读取midi并自动演奏原神风物之诗琴。 可以自定义配置文件自动调整音符来适配风物之诗琴。 (原神1.4直播那天就开始做了!到现在才能放出来。。) 如何使用 在Release页面中下载打包好的程序和midi压缩包并解压。 双击运行“疯物之诗琴.exe”。 在原神中打开风物之诗琴,软件内输入

435 Jan 04, 2023
Machine translation models released by the Gourmet project

Gourmet Models Overview The Gourmet project has released several machine translation models to translate low-resource languages. This repository conta

Edinburgh NLP 5 Dec 08, 2021
Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Ubiquitous Knowledge Processing Lab 9.1k Jan 02, 2023
本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。

【关于 NLP】那些你不知道的事 作者:杨夕、芙蕖、李玲、陈海顺、twilight、LeoLRH、JimmyDU、艾春辉、张永泰、金金金 介绍 本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。 目录架构 一、【

1.4k Dec 30, 2022
To be a next-generation DL-based phenotype prediction from genome mutations.

Sequence -----------+-- 3D_structure -- 3D_module --+ +-- ? | |

Eric Alcaide 18 Jan 11, 2022
A Practitioner's Guide to Natural Language Processing

Learn how to process, classify, cluster, summarize, understand syntax, semantics and sentiment of text data with the power of Python! This repository contains code and datasets used in my book, Text

Dipanjan (DJ) Sarkar 1.5k Jan 03, 2023
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
Pipeline for chemical image-to-text competition

BMS-Molecular-Translation Introduction This is a pipeline for Bristol-Myers Squibb – Molecular Translation by Vadim Timakin and Maksim Zhdanov. We got

Maksim Zhdanov 7 Sep 20, 2022
NVDA, the free and open source Screen Reader for Microsoft Windows

NVDA NVDA (NonVisual Desktop Access) is a free, open source screen reader for Microsoft Windows. It is developed by NV Access in collaboration with a

NV Access 1.6k Jan 07, 2023
FedNLP: A Benchmarking Framework for Federated Learning in Natural Language Processing

FedNLP is a research-oriented benchmarking framework for advancing federated learning (FL) in natural language processing (NLP). It uses FedML repository as the git submodule. In other words, FedNLP

FedML-AI 216 Nov 27, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
Graph4nlp is the library for the easy use of Graph Neural Networks for NLP

Graph4NLP Graph4NLP is an easy-to-use library for R&D at the intersection of Deep Learning on Graphs and Natural Language Processing (i.e., DLG4NLP).

Graph4AI 1.5k Dec 23, 2022
Interpretable Models for NLP using PyTorch

This repo is deprecated. Please find the updated package here. https://github.com/EdGENetworks/anuvada Anuvada: Interpretable Models for NLP using PyT

Sandeep Tammu 19 Dec 17, 2022
This Project is based on NLTK It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its antonyms, its synonyms

This Project is based on NLTK(Natural Language Toolkit) It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its

SaiVenkatDhulipudi 2 Nov 17, 2021
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

NEC Laboratories Europe 13 Sep 08, 2022
[ICCV 2021] Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 86 Dec 28, 2022