A python framework to transform natural language questions to queries in a database query language.

Related tags

Text Data & NLPquepy
Overview
  __ _ _   _  ___ _ __  _   _
 / _` | | | |/ _ \ '_ \| | | |
| (_| | |_| |  __/ |_) | |_| |
 \__, |\__,_|\___| .__/ \__, |
    |_|          |_|    |___/

What's quepy?

Quepy is a python framework to transform natural language questions to queries in a database query language. It can be easily customized to different kinds of questions in natural language and database queries. So, with little coding you can build your own system for natural language access to your database.

Currently Quepy provides support for Sparql and MQL query languages. We plan to extended it to other database query languages.

An example

To illustrate what can you do with quepy, we included an example application to access DBpedia contents via their sparql endpoint.

You can try the example online here: Online demo

Or, you can try the example yourself by doing:

python examples/dbpedia/main.py "Who is Tom Cruise?"

And it will output something like this:

SELECT DISTINCT ?x1 WHERE {
    ?x0 rdf:type foaf:Person.
    ?x0 rdfs:label "Tom Cruise"@en.
    ?x0 rdfs:comment ?x1.
}

Thomas Cruise Mapother IV, widely known as Tom Cruise, is an...

The transformation from natural language to sparql is done by first using a special form of regular expressions:

person_name = Group(Plus(Pos("NNP")), "person_name")
regex = Lemma("who") + Lemma("be") + person_name + Question(Pos("."))

And then using and a convenient way to express semantic relations:

person = IsPerson() + HasKeyword(person_name)
definition = DefinitionOf(person)

The rest of the transformation is handled automatically by the framework to finally produce this sparql:

SELECT DISTINCT ?x1 WHERE {
    ?x0 rdf:type foaf:Person.
    ?x0 rdfs:label "Tom Cruise"@en.
    ?x0 rdfs:comment ?x1.
}

Using a very similar procedure you could generate and MQL query for the same question obtaining:

[{
    "/common/topic/description": [{}],
    "/type/object/name": "Tom Cruise",
    "/type/object/type": "/people/person"
}]

Installation

You need to have installed docopt and numpy. Other than that, you can just type:

pip install quepy

You can get more details on the installation here:

http://quepy.readthedocs.org/en/latest/installation.html

Learn more

You can find a tutorial here:

http://quepy.readthedocs.org/en/latest/tutorial.html

And the full documentation here:

http://quepy.readthedocs.org/

Join our mailing list

Contribute!

Want to help develop quepy? Welcome aboard! Find us in http://groups.google.com/group/quepy

Owner
Machinalis
Machinalis
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
The Sudachi synonym dictionary in Solar format.

solr-sudachi-synonyms The Sudachi synonym dictionary in Solar format. Summary Run a script that checks for updates to the Sudachi dictionary every hou

Karibash 3 Aug 19, 2022
Espresso: A Fast End-to-End Neural Speech Recognition Toolkit

Espresso Espresso is an open-source, modular, extensible end-to-end neural automatic speech recognition (ASR) toolkit based on the deep learning libra

Yiming Wang 919 Jan 03, 2023
This github repo is for Neurips 2021 paper, NORESQA A Framework for Speech Quality Assessment using Non-Matching References.

NORESQA: Speech Quality Assessment using Non-Matching References This is a Pytorch implementation for using NORESQA. It contains minimal code to predi

Meta Research 36 Dec 08, 2022
Package for controllable summarization

summarizers summarizers is package for controllable summarization based CTRLsum. currently, we only supports English. It doesn't work in other languag

Hyunwoong Ko 72 Dec 07, 2022
Adversarial Examples for Extreme Multilabel Text Classification

Adversarial Examples for Extreme Multilabel Text Classification The code is adapted from the source codes of BERT-ATTACK [1], APLC_XLNet [2], and Atte

1 May 14, 2022
This is a project built for FALLABOUT2021 event under SRMMIC, This project deals with NLP poetry generation.

FALLABOUT-SRMMIC 21 POETRY-GENERATION HINGLISH DESCRIPTION We have developed a NLP(natural language processing) model which automatically generates a

7 Sep 28, 2021
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Sepid Hosseini 13 Nov 24, 2022
Reading Wikipedia to Answer Open-Domain Questions

DrQA This is a PyTorch implementation of the DrQA system described in the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions. Quick Link

Facebook Research 4.3k Jan 01, 2023
Machine Learning Course Project, IMDB movie review sentiment analysis by lstm, cnn, and transformer

IMDB Sentiment Analysis This is the final project of Machine Learning Courses in Huazhong University of Science and Technology, School of Artificial I

Daniel 0 Dec 27, 2021
PyTorch code for EMNLP 2019 paper "LXMERT: Learning Cross-Modality Encoder Representations from Transformers".

LXMERT: Learning Cross-Modality Encoder Representations from Transformers Our servers break again :(. I have updated the links so that they should wor

Hao Tan 838 Dec 19, 2022
Codes for coreference-aware machine reading comprehension

Data and code for the paper "Tracing Origins: Coreference-aware Machine Reading Comprehension" at ACL2022. Dataset There are three folders for our thr

11 Sep 29, 2022
Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors"

SWRM Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors" Clone Clone th

14 Jan 03, 2023
TFIDF-based QA system for AIO2 competition

AIO2 TF-IDF Baseline This is a very simple question answering system, which is developed as a lightweight baseline for AIO2 competition. In the traini

Masatoshi Suzuki 4 Feb 19, 2022
Text to speech for Vietnamese, ez to use, ez to update

Chào mọi người, đây là dự án mở nhằm giúp việc đọc được trở nên dễ dàng hơn. Rất cảm ơn đội ngũ Zalo đã cung cấp hạ tầng để mình có thể tạo ra app này

Trần Cao Minh Bách 32 Jul 29, 2022
AIDynamicTextReader - A simple dynamic text reader based on Artificial intelligence

AI Dynamic Text Reader: This is a simple dynamic text reader based on Artificial

Md. Rakibul Islam 1 Jan 18, 2022
2021语言与智能技术竞赛:机器阅读理解任务

LICS2021 MRC 1. 项目&任务介绍 本项目基于官方给定的baseline(DuReader-Checklist-BASELINE)进行二次改造,对整个代码框架做了简单的重构,对核心网络结构添加了注释,解耦了数据读取的模块,并添加了阈值确认的功能,一些小的细节也做了改进。 本次任务为202

roar 29 Dec 05, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling This repository contains PyTorch evaluation code, training code and pretrain

Facebook Research 94 Oct 26, 2022
Telegram AI chat bot written in Python using Pyrogram

Aurora_Al Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @AuroraAl. Require

♗CσNϙUҽRσR_MҽSƙEƚҽҽR 1 Oct 31, 2021
A collection of models for image - text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022