A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

Overview

A Benchmark for Rough Sketch Cleanup

This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

This code computes the metrics described in the paper and generates the benchmark website to compare the output of various sketch cleanup algorithms.

The Directory Structure

Data directories are defined in the file cfg.yaml:

  • dataset_dir: User puts the dataset here. Needed by the website.
  • alg_dir: User puts automatic results here. Needed by the website.
  • web_dir: We generate the website here. Image paths look like ../{alg_dir}/rest/of/path.svg
  • table_dir: We generate the metrics computed by the benchmark here. Needed to generate the website, but not needed when hosting the website. (A precomputed version for algorithms we tested is provided below.)
  • test_dir: We generate resized image files for testing algorithms here. Needed also when computing metrics. Not needed by the website. (A precomputed version is provided below.)

The default values are

dataset_dir: './data/Benchmark_Dataset
alg_dir: './data/Automatic_Results'
web_dir: './data/web'
table_dir: './data/Evaluation_Data'
test_dir: './data/Benchmark_Testset'

If you are generating your own test_dir data, you need Inkscape and ImageMagick. run_benchmark.py tries to find them according to your OS. You can set the paths directly in cfg.yaml by changing inkscape_path and magick_path to point to Inkscape and ImageMagick's convert executable, respectively.

Installing Code Dependencies

Clone or download this repository. The code is written in Python. It depends on the following modules: aabbtree, CairoSVG, cssutils, matplotlib, numpy, opencv-python, pandas, Pillow, PyYAML, scipy, svglib, svgpathtools, tqdm

You can install these modules with:

pip3 install -r requirements.txt

or, for a more reproducible environment, use Poetry (brew install poetry or pip install poetry):

poetry install --no-root
poetry shell

or Pipenv (pip install pipenv):

pipenv install
pipenv shell

The shell command turns on the virtual environment. It should be run once before running the scripts.

If you are not downloading the precomputed test images, make sure the following external software has been installed in your system:

  1. Inkscape 1.x. Please install an up-to-date Inkscape. Versions prior to 1.0 have incompatible command line parameters. brew cask install inkscape or apt-get install inkscape.
  2. ImageMagick. brew install imagemagick or apt-get install imagemagick.

The Dataset and Precomputed Output

You can download the sketch dataset, precomputed algorithmic output, and computed metrics here: Benchmark_Dataset.zip (900 MB), Automatic_Results.zip (440 MB), Evaluation_Data.zip (20 MB). Unzip them in ./data/ (unless you changed the paths in cfg.yaml):

unzip Benchmark_Dataset.zip
unzip Automatic_Results.zip
unzip Evaluation_Data.zip

Note that the vectorized data has been normalized to have uniform line width. It was too tedious for artists to match line widths with the underlying image, so we did not require them to do so and then normalized the data.

Running

Generating or Downloading the Testset

(If you are trying to regenerate the website from the paper using the precomputed output and already computed metrics, you do not need the Testset. If you want to change anything except the website itself, you need it.)

The Testset consists of files derived from the dataset: rasterized versions of vector images and downsized images. You can regenerate it (see below) or download Benchmark_Testset.zip (780 MB) and extract it into ./data/ (unless you changed the paths in cfg.yaml):

unzip Benchmark_Testset.zip

You can regenerate the Testset (necessary if you change the dataset itself) by running the following commands:

python3 run_benchmark.py --normalize   # generate normalized versions of SVGs
python3 run_benchmark.py --generate-test # generate rasterized versions of Dataset, at different resolutions

This will scan dataset_dir and test_dir, generate missing normalized and rasterized images as needed. It takes approximately 20 to 30 minutes to generate the entire Testset.

Adding Algorithms to the Benchmark

Run your algorithm on all images in the Testset. If your algorithm takes raster input, run on all images in ./data/Benchmark_Testset/rough/pixel. If your algorithm takes vector input, run on all images in ./data/Benchmark_Testset/rough/vector. For each input, save the corresponding output image as a file with the same name in the directory: ./data/Automatic_Results/{name_of_your_method}{input_type}/{parameter}/

The algorithm folder name must contain two parts: name_of_your_method with an input_type suffix. The input_type suffix must be either -png or -svg. The parameter subdirectory can be any string; the string none is replaced with the empty string when generating the website. Folders beginning with a . are ignored. For examples, see the precomputed algorithmic output in ./Automatic_Results. and evaluation result in ./Evaluation_Data already.

If your algorithm runs via alg path/to/input.svg path/to/output.png, here are two example commands to run your algorithm in batch on the entire benchmark. Via find and parallel

find ./data/Benchmark_Testset/rough/pixel -name '*.png' -print0 | parallel -0 alg '{}' './data/Automatic_Results/MyAlgorithm-png/none/{/.}.svg'

Via fd:

fd ./data/Benchmark_Testset/rough/pixel -e png -x alg '{}' './data/Automatic_Results/MyAlgorithm-png/none/{/.}.svg'

Computing the Metrics

Run the evaluation with the command:

python3 run_benchmark.py --evaluation

This command creates CSV files in ./data/Evaluation_Data. It will not overwrite existing CSV files. If you downloaded the precomputed data, remove a file to regenerate it.

Generating the Website to View Evaluation Results

After you have called the evaluation step above to compute the metrics, generate the website with the command:

python3 run_benchmark.py --website

You must also generate thumbnails once with the command:

python3 run_benchmark.py --thumbs

Internally, the --thumbs command creates a shell that calls find, convert, and parallel.

To view the website, open the help.html or index.html inside the web_dir manually or else call:

python3 run_benchmark.py --show

The website visualizes all algorithms' output and plots the metrics.

Putting It All Together

If you don't want to call each step separately, simply call:

python3 run_benchmark.py --all

Computing Metrics on a Single Sketch

Similarity Metrics

To run the similarity metrics manually, use tools/metric_multiple.py. To get help, run:

python3 tools/metric_multiple.py --help

To compare two files:

python3 tools/metric_multiple.py -gt "example/simple-single-dot.png" -i "example/simple-single-dot-horizontal1.png" -d 0 --f-measure --chamfer --hausdorff

Vector Metrics

To evaluate junction quality:

python3 tools/junction_quality.py --help

To compute arc length statistics:

python3 tools/svg_arclengths_statistics.py --help

Rasterization

If you need to convert a file from an SVG to a PNG, you can do it specifying the output filename:

inkscape my_file.svg --export-filename="output-WIDTH.png" --export-width=WIDTH --export-height=HEIGHT

or specifying the output type (the input filename's extension is replaced):

inkscape my_file.svg --export-type=png --export-width=WIDTH --export-height=HEIGHT

The shorthand versions of the above rasterization commands are:

inkscape -o output-WIDTH.png -w WIDTH -h HEIGHT my_file.svg

or

inkscape --export-type=png -w WIDTH -h HEIGHT my_file.svg

If you pass only one of width or height, the other is chosen automatically in a manner preserving the aspect ratio.

[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022