A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

Overview

A Benchmark for Rough Sketch Cleanup

This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

This code computes the metrics described in the paper and generates the benchmark website to compare the output of various sketch cleanup algorithms.

The Directory Structure

Data directories are defined in the file cfg.yaml:

  • dataset_dir: User puts the dataset here. Needed by the website.
  • alg_dir: User puts automatic results here. Needed by the website.
  • web_dir: We generate the website here. Image paths look like ../{alg_dir}/rest/of/path.svg
  • table_dir: We generate the metrics computed by the benchmark here. Needed to generate the website, but not needed when hosting the website. (A precomputed version for algorithms we tested is provided below.)
  • test_dir: We generate resized image files for testing algorithms here. Needed also when computing metrics. Not needed by the website. (A precomputed version is provided below.)

The default values are

dataset_dir: './data/Benchmark_Dataset
alg_dir: './data/Automatic_Results'
web_dir: './data/web'
table_dir: './data/Evaluation_Data'
test_dir: './data/Benchmark_Testset'

If you are generating your own test_dir data, you need Inkscape and ImageMagick. run_benchmark.py tries to find them according to your OS. You can set the paths directly in cfg.yaml by changing inkscape_path and magick_path to point to Inkscape and ImageMagick's convert executable, respectively.

Installing Code Dependencies

Clone or download this repository. The code is written in Python. It depends on the following modules: aabbtree, CairoSVG, cssutils, matplotlib, numpy, opencv-python, pandas, Pillow, PyYAML, scipy, svglib, svgpathtools, tqdm

You can install these modules with:

pip3 install -r requirements.txt

or, for a more reproducible environment, use Poetry (brew install poetry or pip install poetry):

poetry install --no-root
poetry shell

or Pipenv (pip install pipenv):

pipenv install
pipenv shell

The shell command turns on the virtual environment. It should be run once before running the scripts.

If you are not downloading the precomputed test images, make sure the following external software has been installed in your system:

  1. Inkscape 1.x. Please install an up-to-date Inkscape. Versions prior to 1.0 have incompatible command line parameters. brew cask install inkscape or apt-get install inkscape.
  2. ImageMagick. brew install imagemagick or apt-get install imagemagick.

The Dataset and Precomputed Output

You can download the sketch dataset, precomputed algorithmic output, and computed metrics here: Benchmark_Dataset.zip (900 MB), Automatic_Results.zip (440 MB), Evaluation_Data.zip (20 MB). Unzip them in ./data/ (unless you changed the paths in cfg.yaml):

unzip Benchmark_Dataset.zip
unzip Automatic_Results.zip
unzip Evaluation_Data.zip

Note that the vectorized data has been normalized to have uniform line width. It was too tedious for artists to match line widths with the underlying image, so we did not require them to do so and then normalized the data.

Running

Generating or Downloading the Testset

(If you are trying to regenerate the website from the paper using the precomputed output and already computed metrics, you do not need the Testset. If you want to change anything except the website itself, you need it.)

The Testset consists of files derived from the dataset: rasterized versions of vector images and downsized images. You can regenerate it (see below) or download Benchmark_Testset.zip (780 MB) and extract it into ./data/ (unless you changed the paths in cfg.yaml):

unzip Benchmark_Testset.zip

You can regenerate the Testset (necessary if you change the dataset itself) by running the following commands:

python3 run_benchmark.py --normalize   # generate normalized versions of SVGs
python3 run_benchmark.py --generate-test # generate rasterized versions of Dataset, at different resolutions

This will scan dataset_dir and test_dir, generate missing normalized and rasterized images as needed. It takes approximately 20 to 30 minutes to generate the entire Testset.

Adding Algorithms to the Benchmark

Run your algorithm on all images in the Testset. If your algorithm takes raster input, run on all images in ./data/Benchmark_Testset/rough/pixel. If your algorithm takes vector input, run on all images in ./data/Benchmark_Testset/rough/vector. For each input, save the corresponding output image as a file with the same name in the directory: ./data/Automatic_Results/{name_of_your_method}{input_type}/{parameter}/

The algorithm folder name must contain two parts: name_of_your_method with an input_type suffix. The input_type suffix must be either -png or -svg. The parameter subdirectory can be any string; the string none is replaced with the empty string when generating the website. Folders beginning with a . are ignored. For examples, see the precomputed algorithmic output in ./Automatic_Results. and evaluation result in ./Evaluation_Data already.

If your algorithm runs via alg path/to/input.svg path/to/output.png, here are two example commands to run your algorithm in batch on the entire benchmark. Via find and parallel

find ./data/Benchmark_Testset/rough/pixel -name '*.png' -print0 | parallel -0 alg '{}' './data/Automatic_Results/MyAlgorithm-png/none/{/.}.svg'

Via fd:

fd ./data/Benchmark_Testset/rough/pixel -e png -x alg '{}' './data/Automatic_Results/MyAlgorithm-png/none/{/.}.svg'

Computing the Metrics

Run the evaluation with the command:

python3 run_benchmark.py --evaluation

This command creates CSV files in ./data/Evaluation_Data. It will not overwrite existing CSV files. If you downloaded the precomputed data, remove a file to regenerate it.

Generating the Website to View Evaluation Results

After you have called the evaluation step above to compute the metrics, generate the website with the command:

python3 run_benchmark.py --website

You must also generate thumbnails once with the command:

python3 run_benchmark.py --thumbs

Internally, the --thumbs command creates a shell that calls find, convert, and parallel.

To view the website, open the help.html or index.html inside the web_dir manually or else call:

python3 run_benchmark.py --show

The website visualizes all algorithms' output and plots the metrics.

Putting It All Together

If you don't want to call each step separately, simply call:

python3 run_benchmark.py --all

Computing Metrics on a Single Sketch

Similarity Metrics

To run the similarity metrics manually, use tools/metric_multiple.py. To get help, run:

python3 tools/metric_multiple.py --help

To compare two files:

python3 tools/metric_multiple.py -gt "example/simple-single-dot.png" -i "example/simple-single-dot-horizontal1.png" -d 0 --f-measure --chamfer --hausdorff

Vector Metrics

To evaluate junction quality:

python3 tools/junction_quality.py --help

To compute arc length statistics:

python3 tools/svg_arclengths_statistics.py --help

Rasterization

If you need to convert a file from an SVG to a PNG, you can do it specifying the output filename:

inkscape my_file.svg --export-filename="output-WIDTH.png" --export-width=WIDTH --export-height=HEIGHT

or specifying the output type (the input filename's extension is replaced):

inkscape my_file.svg --export-type=png --export-width=WIDTH --export-height=HEIGHT

The shorthand versions of the above rasterization commands are:

inkscape -o output-WIDTH.png -w WIDTH -h HEIGHT my_file.svg

or

inkscape --export-type=png -w WIDTH -h HEIGHT my_file.svg

If you pass only one of width or height, the other is chosen automatically in a manner preserving the aspect ratio.

Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
Xintao 1.4k Dec 25, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
A proof of concept ai-powered Recaptcha v2 solver

Recaptcha Fullauto I've decided to open source my old Recaptcha v2 solver. My latest version will be opened sourced this summer. I am hoping this proj

Nate 60 Dec 20, 2022
An end-to-end machine learning library to directly optimize AUC loss

LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n

Andrew 75 Dec 12, 2022
code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

MVSS-Net Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision Update 22.02.17, Pretrained model for

dong_chengbo 131 Dec 30, 2022
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.

DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2

1 Jan 13, 2022
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
J.A.R.V.I.S is an AI virtual assistant made in python.

J.A.R.V.I.S is an AI virtual assistant made in python. Running JARVIS Without Python To run JARVIS without python: 1. Head over to our installation pa

somePythonProgrammer 16 Dec 29, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022