A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

Overview

A Benchmark for Rough Sketch Cleanup

This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

This code computes the metrics described in the paper and generates the benchmark website to compare the output of various sketch cleanup algorithms.

The Directory Structure

Data directories are defined in the file cfg.yaml:

  • dataset_dir: User puts the dataset here. Needed by the website.
  • alg_dir: User puts automatic results here. Needed by the website.
  • web_dir: We generate the website here. Image paths look like ../{alg_dir}/rest/of/path.svg
  • table_dir: We generate the metrics computed by the benchmark here. Needed to generate the website, but not needed when hosting the website. (A precomputed version for algorithms we tested is provided below.)
  • test_dir: We generate resized image files for testing algorithms here. Needed also when computing metrics. Not needed by the website. (A precomputed version is provided below.)

The default values are

dataset_dir: './data/Benchmark_Dataset
alg_dir: './data/Automatic_Results'
web_dir: './data/web'
table_dir: './data/Evaluation_Data'
test_dir: './data/Benchmark_Testset'

If you are generating your own test_dir data, you need Inkscape and ImageMagick. run_benchmark.py tries to find them according to your OS. You can set the paths directly in cfg.yaml by changing inkscape_path and magick_path to point to Inkscape and ImageMagick's convert executable, respectively.

Installing Code Dependencies

Clone or download this repository. The code is written in Python. It depends on the following modules: aabbtree, CairoSVG, cssutils, matplotlib, numpy, opencv-python, pandas, Pillow, PyYAML, scipy, svglib, svgpathtools, tqdm

You can install these modules with:

pip3 install -r requirements.txt

or, for a more reproducible environment, use Poetry (brew install poetry or pip install poetry):

poetry install --no-root
poetry shell

or Pipenv (pip install pipenv):

pipenv install
pipenv shell

The shell command turns on the virtual environment. It should be run once before running the scripts.

If you are not downloading the precomputed test images, make sure the following external software has been installed in your system:

  1. Inkscape 1.x. Please install an up-to-date Inkscape. Versions prior to 1.0 have incompatible command line parameters. brew cask install inkscape or apt-get install inkscape.
  2. ImageMagick. brew install imagemagick or apt-get install imagemagick.

The Dataset and Precomputed Output

You can download the sketch dataset, precomputed algorithmic output, and computed metrics here: Benchmark_Dataset.zip (900 MB), Automatic_Results.zip (440 MB), Evaluation_Data.zip (20 MB). Unzip them in ./data/ (unless you changed the paths in cfg.yaml):

unzip Benchmark_Dataset.zip
unzip Automatic_Results.zip
unzip Evaluation_Data.zip

Note that the vectorized data has been normalized to have uniform line width. It was too tedious for artists to match line widths with the underlying image, so we did not require them to do so and then normalized the data.

Running

Generating or Downloading the Testset

(If you are trying to regenerate the website from the paper using the precomputed output and already computed metrics, you do not need the Testset. If you want to change anything except the website itself, you need it.)

The Testset consists of files derived from the dataset: rasterized versions of vector images and downsized images. You can regenerate it (see below) or download Benchmark_Testset.zip (780 MB) and extract it into ./data/ (unless you changed the paths in cfg.yaml):

unzip Benchmark_Testset.zip

You can regenerate the Testset (necessary if you change the dataset itself) by running the following commands:

python3 run_benchmark.py --normalize   # generate normalized versions of SVGs
python3 run_benchmark.py --generate-test # generate rasterized versions of Dataset, at different resolutions

This will scan dataset_dir and test_dir, generate missing normalized and rasterized images as needed. It takes approximately 20 to 30 minutes to generate the entire Testset.

Adding Algorithms to the Benchmark

Run your algorithm on all images in the Testset. If your algorithm takes raster input, run on all images in ./data/Benchmark_Testset/rough/pixel. If your algorithm takes vector input, run on all images in ./data/Benchmark_Testset/rough/vector. For each input, save the corresponding output image as a file with the same name in the directory: ./data/Automatic_Results/{name_of_your_method}{input_type}/{parameter}/

The algorithm folder name must contain two parts: name_of_your_method with an input_type suffix. The input_type suffix must be either -png or -svg. The parameter subdirectory can be any string; the string none is replaced with the empty string when generating the website. Folders beginning with a . are ignored. For examples, see the precomputed algorithmic output in ./Automatic_Results. and evaluation result in ./Evaluation_Data already.

If your algorithm runs via alg path/to/input.svg path/to/output.png, here are two example commands to run your algorithm in batch on the entire benchmark. Via find and parallel

find ./data/Benchmark_Testset/rough/pixel -name '*.png' -print0 | parallel -0 alg '{}' './data/Automatic_Results/MyAlgorithm-png/none/{/.}.svg'

Via fd:

fd ./data/Benchmark_Testset/rough/pixel -e png -x alg '{}' './data/Automatic_Results/MyAlgorithm-png/none/{/.}.svg'

Computing the Metrics

Run the evaluation with the command:

python3 run_benchmark.py --evaluation

This command creates CSV files in ./data/Evaluation_Data. It will not overwrite existing CSV files. If you downloaded the precomputed data, remove a file to regenerate it.

Generating the Website to View Evaluation Results

After you have called the evaluation step above to compute the metrics, generate the website with the command:

python3 run_benchmark.py --website

You must also generate thumbnails once with the command:

python3 run_benchmark.py --thumbs

Internally, the --thumbs command creates a shell that calls find, convert, and parallel.

To view the website, open the help.html or index.html inside the web_dir manually or else call:

python3 run_benchmark.py --show

The website visualizes all algorithms' output and plots the metrics.

Putting It All Together

If you don't want to call each step separately, simply call:

python3 run_benchmark.py --all

Computing Metrics on a Single Sketch

Similarity Metrics

To run the similarity metrics manually, use tools/metric_multiple.py. To get help, run:

python3 tools/metric_multiple.py --help

To compare two files:

python3 tools/metric_multiple.py -gt "example/simple-single-dot.png" -i "example/simple-single-dot-horizontal1.png" -d 0 --f-measure --chamfer --hausdorff

Vector Metrics

To evaluate junction quality:

python3 tools/junction_quality.py --help

To compute arc length statistics:

python3 tools/svg_arclengths_statistics.py --help

Rasterization

If you need to convert a file from an SVG to a PNG, you can do it specifying the output filename:

inkscape my_file.svg --export-filename="output-WIDTH.png" --export-width=WIDTH --export-height=HEIGHT

or specifying the output type (the input filename's extension is replaced):

inkscape my_file.svg --export-type=png --export-width=WIDTH --export-height=HEIGHT

The shorthand versions of the above rasterization commands are:

inkscape -o output-WIDTH.png -w WIDTH -h HEIGHT my_file.svg

or

inkscape --export-type=png -w WIDTH -h HEIGHT my_file.svg

If you pass only one of width or height, the other is chosen automatically in a manner preserving the aspect ratio.

Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Qiuying Peng 10 Jun 28, 2022
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
DeepOBS: A Deep Learning Optimizer Benchmark Suite

DeepOBS - A Deep Learning Optimizer Benchmark Suite DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation

Aaron Bahde 7 May 12, 2020
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022