This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

Overview

neon_course

This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see our documentation and our API.

Note: this version of the neon course is synchronized to work with neon v1.8.1, and some notebooks require installation of the aeon dataloader. For install instructions, see the neon and aeon documentation. See neon_course v1.2 for a version of this repository that works with neon version 1.2.

The jupyter notebooks in this repository include:

01 MNIST example

Comprehensive walk-through of how to use neon to build a simple model to recognize handwritten digits. Recommended as an introduction to the neon framework.

02 Fine-tuning

A popular application of deep learning is to load a pre-trained model and fine-tune on a new dataset that may have a different number of categories. This example walks through how to load a VGG model that has been pre-trained on ImageNet, a large corpus of natural images belonging to 1000 categories, and re-train the final few layers on the CIFAR-10 dataset, which has only 10 categories.

03 Writing a custom dataset object

neon provides many built-in methods for loading data from images, videos, audio, text, and more. In the rare cases where you may have to implement a custom dataset object, this notebooks guides users through building a custom dataset object for a modified version of the Street View House Number (SVHN) dataset. Users will not only write a custom dataset, but also design a network to, given an image, draw a bounding box around the digit sequence.

04 Writing a custom activation function and a custom layer

This notebook walks developers through how to implement custom activation functions and layers within neon. We implement the Affine layer, and demonstrate the speed-up difference between using a python-based computation and our own heavily optimized kernels.

05 Defining complex branching models

When simple sequential lists of layers do not suffice for your complex models, we present how to build complex branching models within neon.

06 Deep Residual network on the CIFAR-10 dataset

In neon, models are constructed as python lists, which makes it easy to use for-loops to define complex models that have repeated patterns, such as deep residual networks. This notebook is an end-to-end walkthrough of building a deep residual network, training on the CIFAR-10 dataset, and then applying the model to predict categories on novel images.

07 Writing a custom callback

Callbacks allow models to report back to users its progress during training. In this notebook, we present a callback that plots training cost in real-time within the jupyter notebook.

08 Detecting overfitting

Overfitting is often encountered when training deep learning models. This tutorial demonstrates how to use our visualization tools to detect when a model has overfit on the training data, and how to apply Dropout layers to correct the problem.

For several of the guided exercises, answer keys are provided in the answers/ folder.

09 Sentiment Analysis with LSTM

These two notebooks guide the user through training a recurrent neural network to classify paragraphs of movie reviews into either a positive or negative sentiment. The second notebook contains an example of inference with a trained model, including a section for users to write their own reviews and submit to the model for classification.

Setting up notebooks on remote machines

Some of these notebooks require access to a Titan X GPU. For full instructions on launching a notebook server that one could connect to from a different machine, see http://jupyter-notebook.readthedocs.io/en/latest/public_server.html. For a simple setup, first generate a configuration file:

$ jupyter notebook --generate-config

In your ~/.jupyter directory, edit the notebook config file, jupyter_notebook_config.py and edit the following lines:

c.NotebookApp.ip = '*'

c.NotebookApp.port = 8888

Save your changes and launch the jupyter notebook:

$ jupyter notebook

From a separate machine, open your browser and point to https://[server address]:8888 to connect to the jupyter notebook.

Nervana Cloud

The Nervana Cloud includes an interactive mode to launch jupyter notebooks on our Titan X GPU servers. If you have cloud credentials, launch an interactive session with the ncloud interact command.

For more information, see: http://doc.cloud.nervanasys.com/docs/latest/interact.html

Owner
Nervana
Intel® Nervana™ - Artificial Intelligence Products Group
Nervana
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
Fast, Attemptable Route Planner for Navigation in Known and Unknown Environments

FAR Planner uses a dynamically updated visibility graph for fast replanning. The planner models the environment with polygons and builds a global visi

Fan Yang 346 Dec 30, 2022
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red

Taehoon Kim 2.6k Dec 31, 2022
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022