Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Overview

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

An efficient PyTorch library for Point Cloud Completion.

Project page | Paper | Video

Chulin Xie*, Chuxin Wang*, Bo Zhang, Hao Yang, Dong Chen, and Fang Wen. (*Equal contribution)

Abstract

We proposed a novel Style-based Point Generator with Adversarial Rendering (SpareNet) for point cloud completion. Firstly, we present the channel-attentive EdgeConv to fully exploit the local structures as well as the global shape in point features. Secondly, we observe that the concatenation manner used by vanilla foldings limits its potential of generating a complex and faithful shape. Enlightened by the success of StyleGAN, we regard the shape feature as style code that modulates the normalization layers during the folding, which considerably enhances its capability. Thirdly, we realize that existing point supervisions, e.g., Chamfer Distance or Earth Mover’s Distance, cannot faithfully reflect the perceptual quality of the reconstructed points. To address this, we propose to project the completed points to depth maps with a differentiable renderer and apply adversarial training to advocate the perceptual realism under different viewpoints. Comprehensive experiments on ShapeNet and KITTI prove the effectiveness of our method, which achieves state-of-the-art quantitative performance while offering superior visual quality.

Installation

  1. Create a virtual environment via conda.

    conda create -n sparenet python=3.7
    conda activate sparenet
  2. Install torch and torchvision.

    conda install pytorch cudatoolkit=10.1 torchvision -c pytorch
  3. Install requirements.

    pip install -r requirements.txt
  4. Install cuda

    sh setup_env.sh

Dataset

  • Download the processed ShapeNet dataset generated by GRNet, and the KITTI dataset.

  • Update the file path of the datasets in configs/base_config.py:

    __C.DATASETS.shapenet.partial_points_path = "/path/to/datasets/ShapeNetCompletion/%s/partial/%s/%s/%02d.pcd"
    __C.DATASETS.shapenet.complete_points_path = "/path/to/datasets/ShapeNetCompletion/%s/complete/%s/%s.pcd"
    __C.DATASETS.kitti.partial_points_path = "/path/to/datasets/KITTI/cars/%s.pcd"
    __C.DATASETS.kitti.bounding_box_file_path = "/path/to/datasets/KITTI/bboxes/%s.txt"
    
    # Dataset Options: ShapeNet, ShapeNetCars, KITTI
    __C.DATASET.train_dataset = "ShapeNet"
    __C.DATASET.test_dataset = "ShapeNet"
    

Get Started

Inference Using Pretrained Model

The pretrained models:

Train

All log files in the training process, such as log message, checkpoints, etc, will be saved to the work directory.

  • run

    python   --gpu ${GPUS}\
             --work_dir ${WORK_DIR} \
             --model ${network} \
             --weights ${path to checkpoint}
  • example

    python  train.py --gpu 0,1,2,3 --work_dir /path/to/logfiles --model sparenet --weights /path/to/cheakpoint

Differentiable Renderer

A fully differentiable point renderer that enables end-to-end rendering from 3D point cloud to 2D depth maps. See the paper for details.

Usage of Renderer

The inputs of renderer are pcd, views and radius, and the outputs of renderer are depth_maps.

  • example
    # `projection_mode`: a str with value "perspective" or "orthorgonal"
    # `eyepos_scale`: a float that defines the distance of eyes to (0, 0, 0)
    # `image_size`: an int defining the output image size
    renderer = ComputeDepthMaps(projection_mode, eyepos_scale, image_size)
    
    # `data`: a tensor with shape [batch_size, num_points, 3]
    # `view_id`: the index of selected view satisfying 0 <= view_id < 8
    # `radius_list`: a list of floats, defining the kernel radius to render each point
    depthmaps = renderer(data, view_id, radius_list)

License

The codes and the pretrained model in this repository are under the MIT license as specified by the LICENSE file.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

BibTex

If you like our work and use the codebase or models for your research, please cite our work as follows.

@inproceedings{xie2021stylebased,
      title={Style-based Point Generator with Adversarial Rendering for Point Cloud Completion}, 
      author={Chulin Xie and Chuxin Wang and Bo Zhang and Hao Yang and Dong Chen and Fang Wen},
      booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
      year={2021},
}
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts 🤷‍♂️ What's this? 🤷‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti

Soufiane Belharbi 4 Dec 01, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022