Point Cloud Registration using Representative Overlapping Points.

Overview

Point Cloud Registration using Representative Overlapping Points (ROPNet)

Abstract

3D point cloud registration is a fundamental task in robotics and computer vision. Recently, many learning-based point cloud registration methods based on correspondences have emerged. However, these methods heavily rely on such correspondences and meet great challenges with partial overlap. In this paper, we propose ROPNet, a new deep learning model using Representative Overlapping Points with discriminative features for registration that transforms partial-to-partial registration into partial-to-complete registration. Specifically, we propose a context-guided module which uses an encoder to extract global features for predicting point overlap score. To better find representative overlapping points, we use the extracted global features for coarse alignment. Then, we introduce a Transformer to enrich point features and remove non-representative points based on point overlap score and feature matching. A similarity matrix is built in a partial-to-complete mode, and finally, weighted SVD is adopted to estimate a transformation matrix. Extensive experiments over ModelNet40 using noisy and partially overlapping point clouds show that the proposed method outperforms traditional and learning-based methods, achieving state-of-the-art performance.

Environment

The code has been tested on Ubuntu 16.04, Python 3.7, PyTorch 1.7, Open3D 0.9.

Dataset

Download ModelNet40 from here [435M].

Model Training

cd src/
python train.py --root your_data_path/modelnet40_ply_hdf5_2048/ --noise --unseen

Model Evaluation

cd src/
python eval.py --root your_data_path/modelnet40_ply_hdf5_2048/  --unseen --noise  --cuda --checkpoint work_dirs/models/min_rot_error.pth

Registration Visualization

cd src/
python vis.py --root your_data_path/modelnet40_ply_hdf5_2048/  --unseen --noise  --checkpoint work_dirs/models/min_rot_error.pth

Citation

If you find our work is useful, please consider citing:

@misc{zhu2021point,
      title={Point Cloud Registration using Representative Overlapping Points}, 
      author={Lifa Zhu and Dongrui Liu and Changwei Lin and Rui Yan and Francisco Gómez-Fernández and Ninghua Yang and Ziyong Feng},
      year={2021},
      eprint={2107.02583},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgements

We thank the authors of RPMNet, PCRNet, OverlapPredator, PCT and PointNet++ for open sourcing their methods.

We also thank the third-party code PCReg.PyTorch and Pointnet2.PyTorch.

Owner
ZhuLifa
Computer Vision
ZhuLifa
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
Python library for analysis of time series data including dimensionality reduction, clustering, and Markov model estimation

deeptime Releases: Installation via conda recommended. conda install -c conda-forge deeptime pip install deeptime Documentation: deeptime-ml.github.io

495 Dec 28, 2022
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022