A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Overview

Easy-ERA5-Trck

Easy-ERA5-Trck is a super lightweight Lagrangian model for calculating thousands (even millions) of trajectories simultaneously and efficiently using ERA5 data sets. It can implement super simplified equations of 3-D motion to accelerate integration, and use python multiprocessing to parallelize the integration tasks. Due to its simplification and parallelization, Easy-ERA5-Trck performs great speed in tracing massive air parcels, which makes areawide tracing possible.

Another version using WRF output to drive the model can be found here.

Caution: Trajectory calculation is based on the nearest-neighbor interpolation and first-guess velocity for super efficiency. Accurate calculation algorithm can be found on http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-14-00110.1, or use a professional and complicated model e.g. NOAA HYSPLIT instead.

Any question, please contact Zhenning LI ([email protected])

Galleries

Tibetan Plateau Air Source Tracers

tp_tracer

Tibetan Plateau Air Source Tracers (3D)

tp_tracer_3d

Install

If you wish to run easy-era5-trck using grib2 data, Please first install ecCodes.

Please install python3 using Anaconda3 distribution. Anaconda3 with python3.8 has been fully tested, lower version of python3 may also work (without testing).

Now, we recommend to create a new environment in Anaconda and install the requirements.txt:

conda create -n test_era5trck python=3.8
conda activate test_era5trck
pip install -r requirements.txt

If everything goes smoothly, first cd to the repo root path, and run config.py:

python3 config.py

This will convey fundamental configure parameters to ./conf/config_sys.ini.

Usage

test case

When you install the package ready. You may first want to try the test case. config.ini has been set for testcase, which is a very simple run:

[INPUT]
input_era5_case = ./testcase/
input_parcel_file=./input/input.csv

[CORE]
# timestep in min
time_step = 30
precession = 1-order
# 1 for forward, -1 for backward
forward_option = -1
# for forward, this is the initial time; otherwise, terminating time
start_ymdh = 2015080212
# integration length in hours
integration_length = 24
# how many processors are willing to work for you
ntasks = 4
# not used yet
boundary_check = False

[OUTPUT]
# output format, nc/csv, nc recommended for large-scale tracing
out_fmt = nc
out_prefix = testcase
# output frequency in min
out_frq = 60
# when out_fmt=csv, how many parcel tracks will be organized in a csv file.
sep_num = 5000

When you type python3 run.py, Easy-ERA5-Trck will uptake the above configurations, by which the ERA5 UVW data in ./testcase will be imported for driving the Lagrangian integration.

Now you will see your workers are dedicated to tracing the air parcels. After several seconds, if you see something like:

2021-05-31 17:32:14,015 - INFO : All subprocesses done.
2021-05-31 17:32:14,015 - INFO : Output...
2021-05-31 17:32:14,307 - INFO : Easy ERA5 Track Completed Successfully!

Congratulations! The testcase works smoothly on your machine!

Now you could check the output file in ./output, named as testcase.I20150802120000.E20150801120000.nc|csv, which indicates the initial time and endding time. For backward tracing, I > E, and vice versa.

You could choose output files as plain ascii csv format or netCDF format (Recommended). netCDF format output metadata looks like:

{
dimensions:
    time = 121 ;
    parcel_id = 413 ;
variables:
    double xlat(time, parcel_id) ;
        xlat:_FillValue = NaN ;
    double xlon(time, parcel_id) ;
        xlon:_FillValue = NaN ;
    double xh(time, parcel_id) ;
        xh:_FillValue = NaN ;
    int64 time(time) ;
        time:units = "hours since 1998-06-10 00:00:00" ;
        time:calendar = "proleptic_gregorian" ;
    int64 parcel_id(parcel_id) ;
}

setup your case

Congratulation! After successfully run the toy case, of course, now you are eager to setup your own case. First, build your own case directory, for example, in the repo root dir:

mkdir mycase

Now please make sure you have configured ECMWF CDS API correctly, both in your shell environment and python interface.

Next, set [DOWNLOAD] section in config.ini to fit your desired period, levels, and region for downloading.

[DOWNLOAD]
store_path=./mycase/
start_ymd = 20151220
end_ymd = 20160101
pres=[700, 750, 800, 850, 900, 925, 950, 975, 1000]

# eara: [North, West, South, East]
area=[-10, 0, -90, 360]
# data frame frequency: recommend 1, 2, 3, 6. 
# lower frequency will download faster but less accurate in tracing
freq_hr=3

Here we hope to download 1000-700 hPa data, from 20151220 to 20160101, 3-hr temporal frequency UVW data from ERA5 CDS.

./utlis/getERA5-UVW.py will help you to download the ERA5 reanalysis data for your case, in daily file with freq_hr temporal frequency.

cd utils
python3 getERA5-UVW.py

While the machine is downloading your data, you may want to determine the destinations or initial points of your targeted air parcels. ./input/input.csv: This file is the default file prescribing the air parcels for trajectory simulation. Alternatively, you can assign it by input_parcel_file in config.ini.

The format of this file:

airp_id, init_lat, init_lon, init_h0 (hPa)

For forward trajectory, the init_{lat|lon|h0} denote initial positions; while for backward trajectory, they indicate ending positions. You can write it by yourself. Otherwise, there is also a utility ./utils/take_box_grid.py, which will help you to take air parcels in a rectanguler domain.

plese also set other sections in config.ini accordingly, now these air parcels are waiting your command python3 run.py to travel the world!

Besides, ./utils/control_multi_run.py will help you to run multiple seriels of the simulation. There are some postprocessing scripts for visualization in post_process, you may need to modify them to fit your visualization usage.

Repository Structure

run.py

./run.py: Main script to run the Easy-ERA5-Trck.

conf

  • ./conf/config.ini: Configure file for the model. You may set ERA5 input file, input frequency, integration time steps, and other settings in this file.
  • ./conf/config_sys.ini: Configure file for the system, generate by run config.py.
  • ./conf/logging_config.ini: Configure file for logging module.

core

  • ./core/lagrange.py: Core module for calculating the air parcels Lagrangian trajectories.

lib

  • ./lib/cfgparser.py: Module file containing read/write method of the config.ini
  • ./lib/air_parcel.py: Module file containing definition of air parcel class and related methods such as march and output.
  • ./lib/preprocess_era5inp.py: Module file that defines the field_hdl class, which contains useful fields data (U, V, W...) and related method, including ERA5 grib file IO operations.
  • ./lib/utils.py: utility functions for the model.

post_process

Some visualization scripts.

utils

Utils for downloading, generating input.csv, etc.

Version iteration

Oct 28, 2020

  • Fundimental pipeline design, multiprocessing, and I/O.
  • MVP v0.01

May 31, 2021

  • Major Revision, logging module, and exception treatment
  • test case
  • Major documentation update
  • Utility for data downloading
  • Utility for taking grids in a box
  • Basic functions done, v0.10

Jun 09, 2021

  • The automatic detection of longitude range is added, allowing users to adopt two different ranges of longitude: [-180°, 180°] or [0°, 360°].
  • Currently, if you want to use the [-180°, 180°] data version, you can only set ntasks = 1 in the config.ini file.
You might also like...
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB  HUAWEI P40 NCNN benchmark: 6ms/img,
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Releases(v0.10-beta)
  • v0.10-beta(Jun 2, 2021)

    This is a pre-release of Easy-ERA5-Trck. In this v0.10-beta pre-release, we establish the basic functions forward/backward tracing the air parcels in massive amount, exploiting the usage of multiprocessing in Python. You could use the tracing output for visualization, and analysis which does not require very high precession/accuracy. Boundary check has not been involved yet, and exception handlings are still under-developed, with no promise to cover your exceptional cases.

    Source code(tar.gz)
    Source code(zip)
Owner
Zhenning Li
Wind extinguishes a candle but energizes fire.
Zhenning Li
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
Informal Persian Universal Dependency Treebank

Informal Persian Universal Dependency Treebank (iPerUDT) Informal Persian Universal Dependency Treebank, consisting of 3000 sentences and 54,904 token

Roya Kabiri 0 Jan 05, 2022
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea

Computer Vision Group, Albert-Ludwigs-Universität Freiburg 38 Dec 13, 2022
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022