A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Overview

Easy-ERA5-Trck

Easy-ERA5-Trck is a super lightweight Lagrangian model for calculating thousands (even millions) of trajectories simultaneously and efficiently using ERA5 data sets. It can implement super simplified equations of 3-D motion to accelerate integration, and use python multiprocessing to parallelize the integration tasks. Due to its simplification and parallelization, Easy-ERA5-Trck performs great speed in tracing massive air parcels, which makes areawide tracing possible.

Another version using WRF output to drive the model can be found here.

Caution: Trajectory calculation is based on the nearest-neighbor interpolation and first-guess velocity for super efficiency. Accurate calculation algorithm can be found on http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-14-00110.1, or use a professional and complicated model e.g. NOAA HYSPLIT instead.

Any question, please contact Zhenning LI ([email protected])

Galleries

Tibetan Plateau Air Source Tracers

tp_tracer

Tibetan Plateau Air Source Tracers (3D)

tp_tracer_3d

Install

If you wish to run easy-era5-trck using grib2 data, Please first install ecCodes.

Please install python3 using Anaconda3 distribution. Anaconda3 with python3.8 has been fully tested, lower version of python3 may also work (without testing).

Now, we recommend to create a new environment in Anaconda and install the requirements.txt:

conda create -n test_era5trck python=3.8
conda activate test_era5trck
pip install -r requirements.txt

If everything goes smoothly, first cd to the repo root path, and run config.py:

python3 config.py

This will convey fundamental configure parameters to ./conf/config_sys.ini.

Usage

test case

When you install the package ready. You may first want to try the test case. config.ini has been set for testcase, which is a very simple run:

[INPUT]
input_era5_case = ./testcase/
input_parcel_file=./input/input.csv

[CORE]
# timestep in min
time_step = 30
precession = 1-order
# 1 for forward, -1 for backward
forward_option = -1
# for forward, this is the initial time; otherwise, terminating time
start_ymdh = 2015080212
# integration length in hours
integration_length = 24
# how many processors are willing to work for you
ntasks = 4
# not used yet
boundary_check = False

[OUTPUT]
# output format, nc/csv, nc recommended for large-scale tracing
out_fmt = nc
out_prefix = testcase
# output frequency in min
out_frq = 60
# when out_fmt=csv, how many parcel tracks will be organized in a csv file.
sep_num = 5000

When you type python3 run.py, Easy-ERA5-Trck will uptake the above configurations, by which the ERA5 UVW data in ./testcase will be imported for driving the Lagrangian integration.

Now you will see your workers are dedicated to tracing the air parcels. After several seconds, if you see something like:

2021-05-31 17:32:14,015 - INFO : All subprocesses done.
2021-05-31 17:32:14,015 - INFO : Output...
2021-05-31 17:32:14,307 - INFO : Easy ERA5 Track Completed Successfully!

Congratulations! The testcase works smoothly on your machine!

Now you could check the output file in ./output, named as testcase.I20150802120000.E20150801120000.nc|csv, which indicates the initial time and endding time. For backward tracing, I > E, and vice versa.

You could choose output files as plain ascii csv format or netCDF format (Recommended). netCDF format output metadata looks like:

{
dimensions:
    time = 121 ;
    parcel_id = 413 ;
variables:
    double xlat(time, parcel_id) ;
        xlat:_FillValue = NaN ;
    double xlon(time, parcel_id) ;
        xlon:_FillValue = NaN ;
    double xh(time, parcel_id) ;
        xh:_FillValue = NaN ;
    int64 time(time) ;
        time:units = "hours since 1998-06-10 00:00:00" ;
        time:calendar = "proleptic_gregorian" ;
    int64 parcel_id(parcel_id) ;
}

setup your case

Congratulation! After successfully run the toy case, of course, now you are eager to setup your own case. First, build your own case directory, for example, in the repo root dir:

mkdir mycase

Now please make sure you have configured ECMWF CDS API correctly, both in your shell environment and python interface.

Next, set [DOWNLOAD] section in config.ini to fit your desired period, levels, and region for downloading.

[DOWNLOAD]
store_path=./mycase/
start_ymd = 20151220
end_ymd = 20160101
pres=[700, 750, 800, 850, 900, 925, 950, 975, 1000]

# eara: [North, West, South, East]
area=[-10, 0, -90, 360]
# data frame frequency: recommend 1, 2, 3, 6. 
# lower frequency will download faster but less accurate in tracing
freq_hr=3

Here we hope to download 1000-700 hPa data, from 20151220 to 20160101, 3-hr temporal frequency UVW data from ERA5 CDS.

./utlis/getERA5-UVW.py will help you to download the ERA5 reanalysis data for your case, in daily file with freq_hr temporal frequency.

cd utils
python3 getERA5-UVW.py

While the machine is downloading your data, you may want to determine the destinations or initial points of your targeted air parcels. ./input/input.csv: This file is the default file prescribing the air parcels for trajectory simulation. Alternatively, you can assign it by input_parcel_file in config.ini.

The format of this file:

airp_id, init_lat, init_lon, init_h0 (hPa)

For forward trajectory, the init_{lat|lon|h0} denote initial positions; while for backward trajectory, they indicate ending positions. You can write it by yourself. Otherwise, there is also a utility ./utils/take_box_grid.py, which will help you to take air parcels in a rectanguler domain.

plese also set other sections in config.ini accordingly, now these air parcels are waiting your command python3 run.py to travel the world!

Besides, ./utils/control_multi_run.py will help you to run multiple seriels of the simulation. There are some postprocessing scripts for visualization in post_process, you may need to modify them to fit your visualization usage.

Repository Structure

run.py

./run.py: Main script to run the Easy-ERA5-Trck.

conf

  • ./conf/config.ini: Configure file for the model. You may set ERA5 input file, input frequency, integration time steps, and other settings in this file.
  • ./conf/config_sys.ini: Configure file for the system, generate by run config.py.
  • ./conf/logging_config.ini: Configure file for logging module.

core

  • ./core/lagrange.py: Core module for calculating the air parcels Lagrangian trajectories.

lib

  • ./lib/cfgparser.py: Module file containing read/write method of the config.ini
  • ./lib/air_parcel.py: Module file containing definition of air parcel class and related methods such as march and output.
  • ./lib/preprocess_era5inp.py: Module file that defines the field_hdl class, which contains useful fields data (U, V, W...) and related method, including ERA5 grib file IO operations.
  • ./lib/utils.py: utility functions for the model.

post_process

Some visualization scripts.

utils

Utils for downloading, generating input.csv, etc.

Version iteration

Oct 28, 2020

  • Fundimental pipeline design, multiprocessing, and I/O.
  • MVP v0.01

May 31, 2021

  • Major Revision, logging module, and exception treatment
  • test case
  • Major documentation update
  • Utility for data downloading
  • Utility for taking grids in a box
  • Basic functions done, v0.10

Jun 09, 2021

  • The automatic detection of longitude range is added, allowing users to adopt two different ranges of longitude: [-180°, 180°] or [0°, 360°].
  • Currently, if you want to use the [-180°, 180°] data version, you can only set ntasks = 1 in the config.ini file.
You might also like...
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB  HUAWEI P40 NCNN benchmark: 6ms/img,
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Releases(v0.10-beta)
  • v0.10-beta(Jun 2, 2021)

    This is a pre-release of Easy-ERA5-Trck. In this v0.10-beta pre-release, we establish the basic functions forward/backward tracing the air parcels in massive amount, exploiting the usage of multiprocessing in Python. You could use the tracing output for visualization, and analysis which does not require very high precession/accuracy. Boundary check has not been involved yet, and exception handlings are still under-developed, with no promise to cover your exceptional cases.

    Source code(tar.gz)
    Source code(zip)
Owner
Zhenning Li
Wind extinguishes a candle but energizes fire.
Zhenning Li
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 187 Jan 06, 2023
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning

H-Transformer-1D Implementation of H-Transformer-1D, Transformer using hierarchical Attention for sequence learning with subquadratic costs. For now,

Phil Wang 123 Nov 17, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
Cross View SLAM

Cross View SLAM This is the associated code and dataset repository for our paper I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Loca

Ian D. Miller 99 Dec 09, 2022
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅

🏅 Collection of Kaggle Solutions and Ideas 🏅

Farid Rashidi 2.3k Jan 08, 2023
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

haifeng xia 32 Oct 26, 2022
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
a dnn ai project to classify which food people are eating on audio recordings

Deep Learning - EAT Challenge About This project is part of an AI challenge of the DeepLearning course 2021 at the University of Augsburg. The objecti

Marco Tröster 1 Oct 24, 2021