Experiments with Fourier layers on simulation data.

Overview

Teaser

Factorized Fourier Neural Operators

This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fourier Neural Operators.

The Fourier Neural Operator (FNO) is a learning-based method for efficiently simulating partial differential equations. We propose the Factorized Fourier Neural Operator (F-FNO) that allows much better generalization with deeper networks. With a careful combination of the Fourier factorization, weight sharing, the Markov property, and residual connections, F-FNOs achieve a six-fold reduction in error on the most turbulent setting of the Navier-Stokes benchmark dataset. We show that our model maintains an error rate of 2% while still running an order of magnitude faster than a numerical solver, even when the problem setting is extended to include additional contexts such as viscosity and time-varying forces. This enables the same pretrained neural network to model vastly different conditions.

Getting Started

# Set up pyenv and pin python version to 3.9.7
curl https://pyenv.run | bash
# Configure our shell's environment for pyenv
pyenv install 3.9.7
pyenv local 3.9.7

# Set up poetry
curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/install-poetry.py | python -
export PATH="$HOME/.local/bin:$PATH"

# Install all python dependencies
poetry install
source .venv/bin/activate # or: poetry shell
# If we need to use Jupyter notebooks
python -m ipykernel install --user --name fourierflow --display-name "fourierflow"
# Temp fix until allennlp has upgraded transformers dependencies to 4.11
poe update-transformers
# Manually reinstall Pytorch with CUDA 11.1 support
# Monitor poetry's support for pytorch here: https://github.com/python-poetry/poetry/issues/2613
poe install-torch-cuda11

# set default paths
cp example.env .env
# The environment variables in .env will be loaded automatically when running
# fourierflow train, but we can also load them manually in our terminal
export $(cat .env | xargs)

# Alternatively, you can pass the paths to the system using env vars, e.g.
FNO_DATA_ROOT=/My/Data/Location fourierflow

Navier Stokes Experiments

You can download all of our datasets and pretrained model as follows:

# Datasets (209GB)
wget --continue https://object-store.rc.nectar.org.au/v1/AUTH_c0e4d64401cf433fb0260d211c3f23f8/fourierflow/data.tar.gz
tar -zxvf data.tar.gz

# Pretrained models and results (30GB)
wget --continue https://object-store.rc.nectar.org.au/v1/AUTH_c0e4d64401cf433fb0260d211c3f23f8/fourierflow/experiments.tar.gz
tar -zxvf experiments.tar.gz

Alternatively, you can also generate the datasets from scratch:

# Download Navier Stokes datasets
fourierflow download fno

# Generate Navier Stokes on toruses with a different forcing function and
# viscosity for each sample. Takes 14 hours.
fourierflow generate navier-stokes --force random --cycles 2 --mu-min 1e-5 \
    --mu-max 1e-4 --steps 200 --delta 1e-4 \
    data/navier-stokes/random_force_mu.h5

# Generate Navier Stokes on toruses with a different time-varying forcing
# function and a different viscosity for each sample. Takes 21 hours.
fourierflow generate navier-stokes --force random --cycles 2 --mu-min 1e-5 \
    --mu-max 1e-4 --steps 200 --delta 1e-4 --varying-force \
    data/navier-stokes/random_varying_force_mu.h5

# If we decrease delta from 1e-4 to 1e-5, generating the same dataset would now
# take 10 times as long, while the difference between the solutions in step 20
# is only 0.04%.

Training and test commands:

# Reproducing SOA model on Navier Stokes from Li et al (2021).
fourierflow train --trial 0 experiments/navier_stokes_4/zongyi/4_layers/config.yaml

# Train with our best model
fourierflow train --trial 0 experiments/navier_stokes_4/markov/24_layers/config.yaml

# Get inference time on test set
fourierflow predict --trial 0 experiments/navier_stokes_4/markov/24_layers/config.yaml

Visualization commands:

# Create all plots and tables for paper
fourierflow plot layer
fourierflow plot complexity
fourierflow plot table-3

# Create the flow animation for presentation
fourierflow plot flow

# Create plots for the poster
fourierflow plot poster
Owner
Alasdair Tran
Just another collection of fermions and bosons.
Alasdair Tran
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
Code release for Universal Domain Adaptation(CVPR 2019)

Universal Domain Adaptation Code release for Universal Domain Adaptation(CVPR 2019) Requirements python 3.6+ PyTorch 1.0 pip install -r requirements.t

THUML @ Tsinghua University 229 Dec 23, 2022
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
DGN pymarl - Implementation of DGN on Pymarl, which could be trained by VDN or QMIX

This is the implementation of DGN on Pymarl, which could be trained by VDN or QM

4 Nov 23, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 05, 2022
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
Face uncertainty quantification or estimation using PyTorch.

Face-uncertainty-pytorch This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is af

Kaen 3 Sep 16, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
Implementation of the SUMO (Slim U-Net trained on MODA) model

SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava

6 Nov 19, 2022
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
An Implementation of Fully Convolutional Networks in Tensorflow.

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

Marvin Teichmann 1.1k Dec 12, 2022
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022