Council-GAN - Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Overview

Council-GAN

Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Paper

Ori Nizan , Ayellet Tal, Breaking the Cycle - Colleagues are all you need [Project]

gan_council_teaser

gan_council_overview

male2female_gif

glasses_gif

anime_gif

Temporary Telegram Bot

Send image to this telegram bot and it will send you back its female translation using our implementation

Usage

Install requirements

conda env create -f conda_requirements.yml

Downloading the dataset

Download the selfie to anime dataset:

bash ./scripts/download.sh U_GAT_IT_selfie2anime

Download the celeba glasses removal dataset:

bash ./scripts/download.sh celeba_glasses_removal

Download the celeba male to female dataset:

bash ./scripts/download.sh celeba_male2female

use your on dataset:

├──datasets
    └──DATASET_NAME
        ├──testA
            ├──im1.png
            ├──im2.png
            └── ...
        ├──testB
            ├──im3.png
            ├──im4.png
            └── ...
        ├──trainA
            ├──im5.png
            ├──im6.png
            └── ...
        └──trainB
            ├──im7.png
            ├──im8.png
            └── ...

and change the data_root attribute to ./datasets/DATASET_NAME in the yaml file

Training:

Selfie to anime:

python train.py --config configs/anime2face_council_folder.yaml --output_path ./outputs/council_anime2face_256_256 --resume

Glasses removel:

python train.py --config configs/galsses_council_folder.yaml --output_path ./outputs/council_glasses_128_128 --resume

Male to female:

python train.py --config configs/male2female_council_folder.yaml --output_path ./outputs/male2famle_256_256 --resume

Testing:

for converting all the images in input_folder using all the members in the council:

python test_on_folder.py --config configs/anime2face_council_folder.yaml --output_folder ./outputs/council_anime2face_256_256 --checkpoint ./outputs/council_anime2face_256_256/anime2face_council_folder/checkpoints/01000000 --input_folder ./datasets/selfie2anime/testB --a2b 0

or using spsified memeber:

python test_on_folder.py --config configs/anime2face_council_folder.yaml --output_folder ./outputs/council_anime2face_256_256 --checkpoint ./outputs/council_anime2face_256_256/anime2face_council_folder/checkpoints/b2a_gen_3_01000000.pt --input_folder ./datasets/selfie2anime/testB --a2b 0

Download Pretrain Models

Download pretrain male to female model:

bash ./scripts/download.sh pretrain_male_to_female
Then to convert images in --input_folder run:
python test_on_folder.py --config pretrain/m2f/256/male2female_council_folder.yaml --output_folder ./outputs/male2famle_256_256 --checkpoint pretrain/m2f/256/01000000 --input_folder ./datasets/celeba_male2female/testA --a2b 1

Download pretrain glasses removal model:

bash ./scripts/download.sh pretrain_glasses_removal
Then to convert images in --input_folder run:
python test_on_folder.py --config pretrain/glasses_removal/128/galsses_council_folder.yaml --output_folder ./outputs/council_glasses_128_128 --checkpoint pretrain/glasses_removal/128/01000000 --input_folder ./datasets/glasses/testA --a2b 1

Download pretrain selfie to anime model:

bash ./scripts/download.sh pretrain_selfie_to_anime
Then to convert images in --input_folder run:
python test_on_folder.py --config pretrain/anime/256/anime2face_council_folder.yaml --output_folder ./outputs/council_anime2face_256_256 --checkpoint pretrain/anime/256/01000000 --input_folder ./datasets/selfie2anime/testB --a2b 0

Test GUI:

gan_council_overview

test GUI on pretrain model:

male2female
python test_gui.py --config pretrain/m2f/128/male2female_council_folder.yaml --checkpoint pretrain/m2f/128/a2b_gen_0_01000000.pt --a2b 1
glasses Removal
python test_gui.py --config pretrain/glasses_removal/128/galsses_council_folder.yaml --checkpoint pretrain/glasses_removal/128/a2b_gen_3_01000000.pt --a2b 1
selfie2anime
python test_gui.py --config pretrain/anime/256/anime2face_council_folder.yaml --checkpoint pretrain/anime/256/b2a_gen_3_01000000.pt --a2b 0

Open In Colab

Citation

@inproceedings{nizan2020council,
  title={Breaking the Cycle - Colleagues are all you need},
  author={Ori Nizan and Ayellet Tal},
  booktitle={IEEE conference on computer vision and pattern recognition (CVPR)},
  year={2020}
}

Acknowledgement

In this work we based our code on MUNIT implementation. Please cite the original MUNIT if you use their part of the code.

Owner
ori nizan
Computer Vision & Deep Learning PhD student
ori nizan
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
Info and sample codes for "NTU RGB+D Action Recognition Dataset"

"NTU RGB+D" Action Recognition Dataset "NTU RGB+D 120" Action Recognition Dataset "NTU RGB+D" is a large-scale dataset for human action recognition. I

Amir Shahroudy 578 Dec 30, 2022
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
ZeroVL - The official implementation of ZeroVL

This repository contains source code necessary to reproduce the results presente

31 Nov 04, 2022
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
A python3 tool to take a 360 degree survey of the RF spectrum (hamlib + rotctld + RTL-SDR/HackRF)

RF Light House (rflh) A python script to use a rotor and a SDR device (RTL-SDR or HackRF One) to measure the RF level around and get a data set and be

Pavel Milanes (CO7WT) 11 Dec 13, 2022
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022