Run containerized, rootless applications with podman

Overview

Why?

  • restrict scope of file system access
  • run any application without root privileges
  • creates usable "Desktop applications" to integrate into your normal workflow
  • cut network access for applications that work with confidential stuff to prevent accidental leakage
  • set MEM and CPU boundaries for your applications
  • easy rollback with version pinning
  • works on wayland
  • gameplayerspecial

Installation:

Tested and verified:

  • Fedora 35
  • Ubuntu 21.10
  • Debian 11.3

Fedora 35

sudo dnf install python3-pip
pip install --user pyyaml
pip install --user jinja2
git clone https://github.com/mody5bundle/capps && cd capps/
checkmodule -M -m -o capps.mod capps.te
semodule_package -o capps.pp -m capps.mod
sudo semodule -i capps.pp
./capps.py -a firefox -d

Ubuntu 21.10

sudo apt install git python3 python3-pip podman
pip3 install jinja2
git clone https://github.com/mody5bundle/capps && cd capps/
./capps.py -a sandbox -d

Debian 11.3

sudo apt install git python3 python3-pip podman
pip3 install jinja2 pyyaml
git clone https://github.com/mody5bundle/capps && cd capps/
./capps.py -a spotify -d -s

Usage

capps.py [-h] [-a app1 app2 ... [app1 app2 ... ...]] [-c /path/to/config.yaml] [-b] [-r] [-i] [-v] [-s] [-d] [-l]

Start podman container apps.

options:
  -h, --help            show this help message and exit
  -a app1 app2 ... [app1 app2 ... ...], --application-list app1 app2 ... [app1 app2 ... ...]
                        List of applications to run as defined in config file
  -c /path/to/config.yaml, --config /path/to/config.yaml
                        Path to config file (defaults to config.yaml)
  -b, --build           (re)build list of provided apps
  -r, --run             run containers of all provided apps (default)
  -i, --install         install as desktop application
  -v, --verbose         enable verbose log output
  -s, --stats           enable stats output
  -d, --debug           enable debug log output
  -l, --list            print available container

Example container that gets Created

podman run --rm -d --hostname firefox \
--name firefox-$RANDOM \
--cap-drop=ALL \
--read-only=true \
--read-only-tmpfs=false \
--systemd=false \
--userns=keep-id \
--security-opt=no-new-privileges \
--memory=2048mb \
--cap-add cap_sys_chroot \
--volume $HOME/Downloads/:/home/firefox/Downloads:rw \
--volume /run/user/$UID/pulse/native:/run/user/$UID/pulse/native:ro \
--volume $XDG_RUNTIME_DIR/$WAYLAND_DISPLAY:/tmp/$WAYLAND_DISPLAY:ro \
localhost/firefox

Example config file for firefox

default_permissions: &default_permissions
  cap-drop: ALL
  read-only: true
  read-only-tmpfs: true
  systemd: false
  userns: keep-id
  security-opt: "no-new-privileges"
volumes:
  - &sound "/run/user/$UID/pulse/native:/run/user/$UID/pulse/native:ro"
  - &wayland "$XDG_RUNTIME_DIR/$WAYLAND_DISPLAY:/tmp/$WAYLAND_DISPLAY:ro"
  - &x11 /tmp/.X11-unix:/tmp/.X11-unix:ro
container:
  firefox:
    versioncmd: "firefox --version | awk \"'\"{print \\$3}\"'\""
    repo: "localhost"
    file: "firefox.dockerfile"
    path: "./container/firefox/"
    icon: "firefox.png"
    permissions:
      memory: 2048mb
      <<: *default_permissions
      read-only-tmpfs: false
      cap-add:
        - "cap_sys_chroot"
      volume:
        - "$HOME/Downloads/:/home/firefox/Downloads:rw"
        - *sound
        - *wayland

list images

./capps.py -l
Available Containers in config:
firefox: 	Mem: 2048mb, 	Capabilities:  ['cap_sys_chroot'], 	cap-drop: ALL
Available images on host for firefox:
['localhost/firefox:latest', 'localhost/firefox:98.0']	Entrypoint: ['/bin/sh', '-c', '/usr/bin/firefox --private --private-window']	Size: 1178 MB	 	3391 Minutes old.
['localhost/firefox:97.0.1']	Entrypoint: ['/bin/sh', '-c', '/usr/bin/firefox --private --private-window']	Size: 1182 MB	 	26452 Minutes old.
['localhost/firefox:96.0']	Entrypoint: ['/bin/sh', '-c', '/usr/bin/firefox --private --private-window']	Size: 1156 MB	 	96024 Minutes old.

get stats on started container

./capps.py -a firefox -s
NAME			MEM			  CPU	 READ/WRITE   PIDS
firefox-18685:	 232.1MB / 2.147GB / 10.81% 	 3.17% 	 -- / -- 57
firefox-18685:	 497.1MB / 2.147GB / 23.15% 	 2.24% 	 0B / 2.049MB 226

Selinux:

cat capps.te
checkmodule -M -m -o capps.mod capps.te
semodule_package -o capps.pp -m capps.mod
semodule -i capps.pp
rm -rf capps.{pp,mod}
Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection

Adaptive Class Suppression Loss for Long-Tail Object Detection This repo is the official implementation for CVPR 2021 paper: Adaptive Class Suppressio

CASIA-IVA-Lab 67 Dec 04, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).

Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks This repository contains the code and pre-trained

Hassan Dbouk 7 Dec 05, 2022
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022