GBIM(Gesture-Based Interaction map)

Overview

GBIM

Python 3.6 PaddleX License

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

手势

手势 交互 手势 交互 手势 交互
向上滑动 向左滑动 地图放大
手势 交互 手势 交互 手势 交互
向下滑动 向右滑动 地图缩小

进度安排

基础

  • 确认用于交互的手势。
  • 使用det_acq.py采集一些电脑摄像头拍摄的人手姿势数据。
  • 数据标注,训练手的目标检测模型
  • 捕获目标手,使用clas_acq.py获取手部图像进行标注,并用于训练手势分类模型。
  • 交互手势的检测与识别组合验证。
  • 打开百度地图网页版,进行模拟按键交互。
  • 组合功能,验证基本功能。

进阶

  • 将图像分类改为序列图像分类,提高手势识别的流畅度和准确度。
  • 重新采集和标注数据,调参训练模型。
  • 搭建可用于参数调节的地图。
  • 界面整合,整理及美化。

数据集 & 模型

手势检测

  • 数据集使用来自联想小新笔记本摄像头采集的数据,使用labelImg标注为VOC格式,共1011张。该数据集场景、环境和人物单一,仅作为测试使用,不提供数据集下载。数据组织参考PaddelX下的PascalVOC数据组织方式。
  • 模型使用超轻量级PPYOLO Tiny,模型大小小于4MB,随便训练了100轮后保留best_model作为测试模型,由于数据集和未调参训练的原因,当前默认识别效果较差

手势分类

  • 数据集使用来自联想小新笔记本摄像头采集的数据,通过手势检测模型提出出手图像,人工分为7类,分别为6种交互手势以及“其他”,共1102张。该数据集数量较少,手型及手势单一,仅作为测试使用,不提供数据集下载。数据组织形式如下:
dataset
	├-- Images
	|     ├-- up
	┆     ┆    └-- xxx.jpg
	|     └-- other
	┆          └-- xxx.jpg
	├-- labels.txt
	├-- train_list.txt
	└-- val_list.txt
  • 模型使用超轻量级MobileNet V3 small,模型大小小于7MB,由于数据量很小,随便训练了20轮后保留best_model作为测试模型,当前识别分类效果较差

模型文件上传使用LFS,下拉时注意需要安装LFS,参考LFS文档。后续将重新采集和标注更加多样的大量数据集,并采用更好的调参方法获得更加准确的识别模型

演示

手势识别

地图交互

*未显示Capture界面

使用

  1. 克隆当前项目到本地,按照requirements.txt安装所依赖的包opencv、paddlex以及pynput。PaddleX对应请安装最新版的PaddlePaddle,由于模型轻量,CPU版本足矣,参考下面代码,细节参考官方网站
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
  1. 进入demo.py,将浏览器路径修改为自己使用的浏览器路径:
web_path = '"D:/Twinkstar/Twinkstar Browser/twinkstar.exe"'  # 自己的浏览器路径
  1. 运行demo.py启动程序:
cd GBIM
python demo.py

常见问题及解决

  1. Q: 拉项目时卡住不动

    A:首先确认按照文档安装LFS。如果已经安装那极大可能是网络问题,可以等待一段时间,或先跳过LFS文件,再单独拉取,参考下面git代码:

    // 开启跳过无法clone的LFS文件
    git lfs install --skip-smudge 
    // clone当前项目
    git clone "current project" 
    // 进入当前项目,单独拉取LFS文件
    cd "current project" 
    git lfs pull 
    // 恢复LFS设置
    git lfs install --force
  2. Q:按q或者手势交互无效

    A:请注意当前鼠标点击的焦点,焦点在Capture,则接受q退出;焦点在浏览器,则交互结果将驱动浏览器中的地图进行变换。

  3. Q:安装PaddleX时报错,关于MV C++

    A:若在Windows下安装coco tool时报错,则可能缺少Microsoft Visual C++,可在微软官方下载网页进行下载安装后重启,即可解决。

  4. Q:运行未报错,但没有保存数据到本地

    A:请检查路径是否有中文,cv2.imwrite保存图像时不能有中文路径。

参考

  1. 玩腻了小游戏?Paddle手势识别玩转游戏玩出新花样!
  2. https://github.com/PaddlePaddle/PaddleX

交流与反馈

Email:[email protected]

Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

Amin Rezaei 126 Dec 27, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
Record radiologists' eye gaze when they are labeling images.

Record radiologists' eye gaze when they are labeling images. Read for installation, usage, and deep learning examples. Why use MicEye Versatile As a l

24 Nov 03, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023