Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Overview

Manipulator Learning

This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In particular, we have a set of environments with a simulated version of our lab's mobile manipulator, the Thing, containing a UR10 mounted on a Ridgeback base, as well as a set of environments using a table-mounted Franka Emika Panda.

The package currently contains variations of the following tasks:

  • Reach
  • Lift
  • Stack
  • Pick and Place
  • Sort
  • Insert
  • Pick and Insert
  • Door Open
  • Play (multitask)

Requirements

  • python (3.7+)
  • pybullet
  • numpy
  • gym
  • transforms3d
  • Pillow (for rendering)
  • liegroups

Installation

git clone https://github.com/utiasSTARS/manipulator-learning
cd manipulator-learning && pip install .

Usage

The easiest way to use environments in this repository is to import the whole envs module and then initialize using getattr. For example, to load our Panda Play environment with the insertion tray:

import manipulator_learning.sim.envs as manlearn_envs
env = getattr(manlearn_envs, 'PandaPlayInsertTrayXYZState')()

obs = env.reset()
next_obs, rew, done, info = env.step(env.action_space.sample())

You can also easily initialize the environment with a wide variety of different keyword arguments, e.g:

env = getattr(manlearn_envs, 'PandaPlayInsertTrayXYZState')(main_task='stack_01')

Image environments

All environments that are suffixed with Image or Multiview produce observations that contain RGB and depth images as well as numerical proprioceptive data. Here is an example of how you can access each type of data in these environments:

obs = env.reset()
img = obs['img']
depth = obs['depth']
proprioceptive = obs['obs']

By default, all image based environments render headlessly using EGL, but if you want to render the full pybullet GUI, you can using the render_opengl_gui and egl flags like this:

env = getattr(manlearn_envs, 'PandaPlayInsertTrayXYZState')(render_opengl_gui=True, egl=False)

Environment Details

Thing (mobile manipulator) environments

Our mobile manipulation environments were primarily designed to allow base position changes between task episodes, but don't actually allow movement during an episode. For this reason, many included environments include both an Image version and a Multiview version, where all observation and control parameters are identical, except that the base is fixed in the Image version, and the base moves (between episodes) in the Multiview version. See, for example, manipulator_learning/sim/envs/thing_door.py.

Panda Environments

Our panda environments contain several of the same tasks as our Thing environments. Additionally, we have a set of "play" environments that are multi-task.

Current environment list

['PandaPlayXYZState', 
'PandaPlayInsertTrayXYZState', 
'PandaPlayInsertTrayDPGripXYZState', 
'PandaPlayInsertTrayPlusPickPlaceXYZState', 
'PandaLiftXYZState', 
'PandaBringXYZState', 
'PandaPickAndPlaceAirGoal6DofState', 
'PandaReachXYZState', 
'PandaStackXYZState',
'ThingInsertImage', 
'ThingInsertMultiview', 
'ThingPickAndInsertSucDoneImage', 
'ThingPickAndInsertSucDoneMultiview',
'ThingPickAndPlaceXYState', 
'ThingPickAndPlacePrevPosXYState', 
'ThingPickAndPlaceGripPosXYState', 
'ThingPickAndPlaceXYZState', 
'ThingPickAndPlaceGripPosXYZState', 
'ThingPickAndPlaceAirGoalXYZState', 
'ThingPickAndPlace6DofState', 
'ThingPickAndPlace6DofLongState', 
'ThingPickAndPlace6DofSmallState', 
'ThingPickAndPlaceAirGoal6DofState', 
'ThingBringXYZState',
'ThingLiftXYZStateMultiview',
'ThingLiftXYZState', 
'ThingLiftXYZMultiview', 
'ThingLiftXYZImage', 
'ThingPickAndPlace6DofSmallImage', 
'ThingPickAndPlace6DofSmall160120Image', 
'ThingPickAndPlace6DofSmallMultiview', 
'ThingSort2Multiview', 
'ThingSort3Multiview', 
'ThingPushingXYState', 
'ThingPushingXYImage', 
'ThingPushing6DofMultiview', 
'ThingReachingXYState', 
'ThingReachingXYImage', 
'ThingStackImage', 
'ThingStackMultiview', 
'ThingStackSmallMultiview', 
'ThingStackSameMultiview', 
'ThingStackSameMultiviewV2', 
'ThingStackSameImageV2', 
'ThingStack3Multiview', 
'ThingStackTallMultiview', 
'ThingDoorImage', 
'ThingDoorMultiview']

Roadmap

  • Make environment generation compatible with gym.make
  • Documentation for environments and options for customization
  • Add imitation learning/data collection code
  • Fix bug that timesteps remaining on rendered window takes an extra step to update
Owner
STARS Laboratory
We are the Space and Terrestrial Autonomous Robotic Systems Laboratory at the University of Toronto
STARS Laboratory
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

VinAI Research 118 Dec 19, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Christopher T. Chubb 35 Dec 21, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
Using Python to Play Cyberpunk 2077

CyberPython 2077 Using Python to Play Cyberpunk 2077 This repo will contain code from the Cyberpython 2077 video series on Youtube (youtube.

Harrison 118 Oct 18, 2022
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021