SciFive: a text-text transformer model for biomedical literature

Overview

SciFive

PWC PWC PWC PWC PWC PWC PWC PWC PWC

SciFive provided a Text-Text framework for biomedical language and natural language in NLP. Under the T5's framework and desrbibed in the paper SciFive: a text-to-text transformer model for biomedical literature, SciFive achieve state-of-the-art and competitive results on multiple biomedical-natural language tasks.

Google Cloud Storage

Our base Google Cloud Storage URI is at gs://scifive

As described in our paper, we make public 6 version of SciFive, each one has been benchmarked to achieve state-of-the-art on different biomedical task. They are all available on our Google Cloud bucket, we are working on release the models on HuggingFace also.

Instruction on access Cloud Storage from the command line with python library gsutil is described here

gsutil URI for 6 SciFive models:

gsutil URI for Pretrain data:

Example

Below, we give an example of how to use SciFive on Huggingface to generate MedNLI outputs. We also publish our SciFive finetuned on MedNLI for reproducing experiments.

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-large-Pubmed_PMC-MedNLI")  
model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-large-Pubmed_PMC-MedNLI")
model.cuda()

sent_1 = "In the ED, initial VS revealed T 98.9, HR 73, BP 121/90, RR 15, O2 sat 98% on RA."
sent_2 = "The patient is hemodynamically stable"
text =  f"mednli: sentence1: {sent_1} sentence2: {sent_2}"

encoding = tokenizer.encode_plus(text, padding='max_length', max_length=256, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")

outputs = model.generate(
    input_ids=input_ids, attention_mask=attention_masks,
    max_length=8,
    early_stopping=True
)

for output in outputs:
    line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
    print(line)

HuggingFace

Datasets

All of the finetune dataset already pre-procossed into text-text format also availabe at this

📊   Expected Results

Citations

If you use SciFive model or our code for publications, please cite:

@misc{phan2021scifive,
      title={SciFive: a text-to-text transformer model for biomedical literature}, 
      author={Long N. Phan and James T. Anibal and Hieu Tran and Shaurya Chanana and Erol Bahadroglu and Alec Peltekian and Grégoire Altan-Bonnet},
      year={2021},
      eprint={2106.03598},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
Long Phan
A Computer Science student at Case Western Reserve University
Long Phan
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Introduction This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Abstrac

Leo 21 Nov 23, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
The implementation of "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Band Speech Enhancement"

SF-Net for fullband SE This is the repo of the manuscript "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Ban

Guochen Yu 36 Dec 02, 2022
Neural Cellular Automata + CLIP

🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023