An intelligent, flexible grammar of machine learning.

Overview


drawing


An english representation of machine learning. Modify what you want, let us handle the rest.

Build Status Downloads Package

Overview

Nylon is a python library that lets you customize automated machine learning workflows through a concise, JSON syntax. It provides a built in grammar, in which you can access different operations in ML with the english language.

Installation

Install latest release version:

pip install -U nylon-ai

Install directory from github:

git clone https://github.com/Palashio/nylon.git
cd nylon-ai
pip install .

Usage: the basics

A new Polymer object should be created everytime you're working with a new dataset. When initializing an object, a dataset in the form of a .csv or .xs file should be passed to it by path:

nylon_object = Polymer('housing.csv')

Now, it's time to create a specifications file using the nylon grammar. Here's a basic one, that lets Nylon handle most of the work. Nylon currently has four major parts in it's grammar: the data reader, preprocessor, modeler, and analysis modules. In the example below, you can see that we're specifying the target column under data (which is always required), and manually specifying the type of preprocessing we'd like. Everything we haven't specified will be handled for us.

{
  "data": {
    "target": "ocean_proximity"
  },
  "preprocessor": {
    "fill": "ALL",
    "label-encode": "ocean_proximity"
  }
}

Now, we can override more components to take advantage of the built in ensembling of SVM's, and nearest neighbors modeling in nylon.

 json_file = {
    "data": {
        "target": "ocean_proximity"
    },
    "preprocessor": {
        "fill": "ALL",
        "label-encode": "ocean_proximity"
    },
    "modeling": {
        "type": ["svms", "neighbors"]
    }
}

Now we can call,

nylon_object.run(json_file)

This will return a fully trained nylon object. You can access all information about this particular iteration in the .results field of the object.

Demos

alt text alt text

Asking for help

Welcome to the Nylon community!

If you have any questions, feel free to:

  1. Read the Docs
  2. Search through the issues
  3. Join our Discord

Contact

Shoot me an email at [email protected] if you'd like to get in touch!

Follow me on twitter for updates and my insights about modern AI!

Owner
Palash Shah
restructuring ML
Palash Shah
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

Neema Kotonya 42 Nov 17, 2022
The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".

Codebase for learning control flow in transformers The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformer

Csordás Róbert 24 Oct 15, 2022
Repository for the paper titled: "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer"

When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer This repository contains code for our paper titled "When is BERT M

Princeton Natural Language Processing 9 Dec 23, 2022
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
Model-based reinforcement learning in TensorFlow

Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,

46 Nov 09, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022