CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

Overview

CorrProxies

Declaration

This repo is for paper: Optimizing Machine Learning Inference Queries with Correlative Proxy Models.

Setup ENV

Quick Start

  1. We provide a fully ready Docker Image ready to use out-of-box.
  2. Optionally, you can also follow the steps to build your own testing environment.

The Provided Docker Environment

Steps to run the Docker Environment

  • Get the docker image from this link.
  • Load the docker image. docker load -i corrproxies-image.tar
  • Run the docker image in a container. docker run --name=CorrProxies -i -t -d corrproxies-image
    • it will return you the docker container ID, for example d979af9a17f23345cb2894b22dc8527680acdfd7a7e1aaed6a7a28ea134e66e6.
  • Use CLI to control the container with the specific ID generated. docker exec -it d979af9a17f23345cb2894b22dc8527680acdfd7a7e1aaed6a7a28ea134e66e6 /bin/zsh

ENV Spec

File structure:

  • The home directory for CorrProxies locates at /home/CorrProxies.
  • The Python executable locates at /home/anaconda3/envs/condaenv/bin/python3.
  • The models locate at /home/CorrProxies/model.
  • The datasets locate at /home/CorrProxies/data.
  • The starting scripts locate at /home/CorrProxies/scripts.

Build Your Own Environment

This instruction is based on a clean distribution of [email protected]

  1. Install pre-requisites.

    apt-get update && apt-get install -y build-essential

  2. Install Anaconda.

    • wget https://repo.anaconda.com/archive/Anaconda3-5.3.1-Linux-x86_64.sh && bash Anaconda3-5.3.1-Linux-x86_64.sh -b -p
    • export PATH=" /bin/:$PATH"
  3. Install [email protected] with Anaconda3.

    conda create -n condaenv python=3.6.6

  4. Activate the newly installed Python ENV.

    conda activate condaenv

  5. Install dependencies with pip.

    pip3 install -r requirements.txt

  6. Install Java (openjdk-8) (for standford-nlp usage).

    apt-get install -y openjdk-8-jdk

Queries & Datasets

  • We use Twitter text dataset, COCO image dataset and UCF101 video dataset as our benchmark datasets. Please see this page for examples of detailed Queries and Datasets examples we use in our experiments.

  • After you setup the environment, either manually or using the docker image provided by us, the next step is to download the datasets.

    • To get the COCO dataset: cd /home/CorrProxies/data/image/coco && ./get_coco_dataset.sh
    • To get the UCF101 dataset: cd /home/CorrProxies/data/video/ucf101 && wget -c https://www.crcv.ucf.edu/data/UCF101/UCF101.rar && unrar x UCF101.rar.

Execution

Please pull the latest code before executing the code. Command cd /home/CorrProxies && git pull

Run Operators Individually

To run and see each operator we used in our experiment, simply execute python3 . For example: python3 operators/ml_operators/image_video_operators/video_activity_recognition.py.

Run Experiments

We use scripts/run.sh to start experiments. The script will take in command line arguments.

  • Text(Twitter)

    • Since we do not provide text dataset, we will skip the experiment.
  • Image(COCO)

    Example: ./scripts/run.sh -w 2 -t 1 -i '1' -a 0.9 -s 3 -o 2 -e 1

  • Video(UCF101)

    Example: ./scripts/run.sh -w 2 -t 2 -i '1' -a 0.9 -s 3 -o 2 -e 1

  • arguments detail.

    • w int: experiment type in [1, 2, 3, 4] referring to /home/CorrProxies/ml_workflow/exps/WorkflowExp*.py;
    • t int: query type in [0, 1, 2]. Int 0, 1, 2 means queries on the Twitter, COCO, and UCF101 datasets, respectively;
    • i int: query index in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
    • a float: query accuracy;
    • s int: scheme in [0, 1, 2, 3, 4, 5, 6]. Int 0, 1, 2, 3, 4, 5, 6 means 'ORIG', 'NS', 'PP', 'CORE', 'COREa', 'COREh' and 'REORDER' schemes, respectively;
    • o int: number of threads used in optimization phase;
    • e int: number of threads used in execution phase after generating an optimized plan.
Owner
ZhihuiYangCS
ZhihuiYangCS
A machine learning web application for binary classification using streamlit

Machine Learning web App This is a machine learning web application for binary classification using streamlit options this application contains 3 clas

abdelhak mokri 1 Dec 20, 2021
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/中文 Links: Documentation | Gallery | PyPI | Changelog | Source | Downl

Zhining Liu 176 Jan 04, 2023
Winning solution for the Galaxy Challenge on Kaggle

Winning solution for the Galaxy Challenge on Kaggle

Sander Dieleman 483 Jan 02, 2023
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
Book Recommender System Using Sci-kit learn N-neighbours

Model-Based-Recommender-Engine I created a book Recommender System using Sci-kit learn's N-neighbours algorithm for my model and the streamlit library

1 Jan 13, 2022
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022
Summer: compartmental disease modelling in Python

Summer: compartmental disease modelling in Python Summer is a Python-based framework for the creation and execution of compartmental (or "state-based"

6 May 13, 2022
A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

Rob 2 Aug 25, 2022
Model factory is a ML training platform to help engineers to build ML models at scale

Model Factory Machine learning today is powering many businesses today, e.g., search engine, e-commerce, news or feed recommendation. Training high qu

16 Sep 23, 2022
inding a method to objectively quantify skill versus chance in games, using reinforcement learning

Skill-vs-chance-games-analysis - Finding a method to objectively quantify skill versus chance in games, using reinforcement learning

Marcus Chiam 4 Nov 19, 2022
(3D): LeGO-LOAM, LIO-SAM, and LVI-SAM installation and application

SLAM-application: installation and test (3D): LeGO-LOAM, LIO-SAM, and LVI-SAM Tested on Quadruped robot in Gazebo ● Results: video, video2 Requirement

EungChang-Mason-Lee 203 Dec 26, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
This is an auto-ML tool specialized in detecting of outliers

Auto-ML tool specialized in detecting of outliers Description This tool will allows you, with a Dash visualization, to compare 10 models of machine le

1 Nov 03, 2021
A single Python file with some tools for visualizing machine learning in the terminal.

Machine Learning Visualization Tools A single Python file with some tools for visualizing machine learning in the terminal. This demo is composed of t

Bram Wasti 35 Dec 29, 2022
DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning.

DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning. DirectML provides GPU acceleration for common machine learning tasks across a broad range of supported ha

Microsoft 1.1k Jan 04, 2023
OptaPy is an AI constraint solver for Python to optimize planning and scheduling problems.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 208 Dec 27, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
2021 Machine Learning Security Evasion Competition

2021 Machine Learning Security Evasion Competition This repository contains code samples for the 2021 Machine Learning Security Evasion Competition. P

Fabrício Ceschin 8 May 01, 2022
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
pandas, scikit-learn, xgboost and seaborn integration

pandas, scikit-learn and xgboost integration.

299 Dec 30, 2022