Pyramid addon for OpenAPI3 validation of requests and responses.

Overview

Validate Pyramid views against an OpenAPI 3.0 document

CircleCI for pyramid_openapi3 (master branch) Test coverage (master branch) Test coverage (master branch) latest version of pyramid_openapi3 on PyPI Supported Python versions License: MIT Built by these great folks! Talk to us in #pyramid on Freenode IRC

Peace of Mind

The reason this package exists is to give you peace of mind when providing a RESTful API. Instead of chasing down preventable bugs and saying sorry to consumers, you can focus on more important things in life.

  • Your API documentation is never out-of-date, since it is generated out of the API document that you write.
  • The documentation comes with try-it-out examples for every endpoint in your API. You don't have to provide (and maintain) curl commands to showcase how your API works. Users can try it themselves, right in their browsers.
  • Your API document is always valid, since your Pyramid app won't even start if the document does not comply with the OpenAPI 3.0 specification.
  • Automatic request payload validation and sanitization. Your views do not require any code for validation and input sanitation. Your view code only deals with business logic. Tons of tests never need to be written since every request, and its payload, is validated against your API document before it reaches your view code.
  • Your API responses always match your API document. Every response from your view is validated against your document and a 500 Internal Server Error is returned if the response does not exactly match what your document says the output of a certain API endpoint should be. This decreases the effects of Hyrum's Law.
  • A single source of truth. Because of the checks outlined above, you can be sure that whatever your API document says is in fact what is going on in reality. You have a single source of truth to consult when asking an API related question, such as "Remind me again, which fields are returned by the endpoint /user/info?".
  • Based on Pyramid, a mature Python Web framework. Companies such as Mozilla, Yelp, RollBar and SurveyMonkey trust Pyramid, and the new pypi.org runs on Pyramid, too. Pyramid is thoroughly tested and documented, providing flexibility, performance, and a large ecosystem of high-quality add-ons.

Building Robust APIs

Features

Getting started

  1. Declare pyramid_openapi3 as a dependency in your Pyramid project.

  2. Include the following lines:

config.include("pyramid_openapi3")
config.pyramid_openapi3_spec('openapi.yaml', route='/api/v1/openapi.yaml')
config.pyramid_openapi3_add_explorer(route='/api/v1/')
  1. Use the openapi view predicate to enable request/response validation:
@view_config(route_name="foobar", openapi=True, renderer='json')
def myview(request):
    return request.openapi_validated.parameters

For requests, request.openapi_validated is available with two fields: parameters and body. For responses, if the payload does not match the API document, an exception is raised.

Advanced configuration

Relative File References in Spec

A feature introduced in OpenAPI3 is the ability to use $ref links to external files (https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#referenceObject).

To use this, you must ensure that you have all of your spec files in a given directory (ensure that you do not have any code in this directory as all the files in it are exposed as static files), then replace the pyramid_openapi3_spec call that you did in Getting Started with the following:

config.pyramid_openapi3_spec_directory('path/to/openapi.yaml', route='/api/v1/spec')

Some notes:

  • Do not set the route of your pyramid_openapi3_spec_directory to the same value as the route of pyramid_openapi3_add_explorer.
  • The route that you set for pyramid_openapi3_spec_directory should not contain any file extensions, as this becomes the root for all of the files in your specified filepath.
  • You cannot use pyramid_openapi3_spec_directory and pyramid_openapi3_spec in the same app.

Endpoints / Request / Response Validation

Provided with pyramid_openapi3 are a few validation features:

  • incoming request validation (i.e., what a client sends to your app)
  • outgoing response validation (i.e., what your app sends to a client)
  • endpoint validation (i.e., your app registers routes for all defined API endpoints)

These features are enabled as a default, but you can disable them if you need to:

config.registry.settings["pyramid_openapi3.enable_endpoint_validation"] = False
config.registry.settings["pyramid_openapi3.enable_request_validation"] = False
config.registry.settings["pyramid_openapi3.enable_response_validation"] = False

Warning: Disabling request validation will result in request.openapi_validated no longer being available to use.

Register Pyramid's Routes

You can register routes in your pyramid application. First, write the x-pyramid-route-name extension in the PathItem of the OpenAPI schema.

paths:
  /foo:
    x-pyramid-route-name: foo_route
    get:
      responses:
        200:
          description: GET foo

Then put the config directive pyramid_openapi3_register_routes in the app_factory of your application.

config.pyramid_openapi3_register_routes()

This means is equals to

config.add_route("foo_route", pattern="/foo")

Demo / Examples

There are three examples provided with this package:

Both examples come with tests that exhibit pyramid_openapi's error handling and validation capabilities.

A fully built-out app, with 100% test coverage, providing a RealWorld.io API is available at niteoweb/pyramid-realworld-example-app. It is a Heroku-deployable Pyramid app that provides an API for a Medium.com-like social app. You are encouraged to use it as a scaffold for your next project.

Design defense

The authors of pyramid_openapi3 believe that the approach of validating a manually-written API document is superior to the approach of generating the API document from Python code. Here are the reasons:

  1. Both generation and validation against a document are lossy processes. The underlying libraries running the generation/validation will always have something missing. Either a feature from the latest OpenAPI specification, or an implementation bug. Having to fork the underlying library in order to generate the part of your API document that might only be needed for the frontend is unfortunate.

    Validation on the other hand allows one to skip parts of validation that are not supported yet, and not block a team from shipping the document.

  2. The validation approach does sacrifice DRY-ness, and one has to write the API document and then the (view) code in Pyramid. It feels a bit redundant at first. However, this provides a clear separation between the intent and the implementation.

  3. The generation approach has the drawback of having to write Python code even for parts of the API document that the Pyramid backend does not handle, as it might be handled by a different system, or be specific only to documentation or only to the client side of the API. This bloats your Pyramid codebase with code that does not belong there.

Running tests

You need to have pipenv and Python 3.7, 3.8, or 3.9 installed on your machine. Then you can run:

$ make tests

Related packages

These packages tackle the same problem-space:

  • pyramid_oas3 seems to do things very similarly to pyramid_openapi3, but the documentation is not in English and we sadly can't fully understand what it does by just reading the code.
  • pyramid_swagger does a similar thing, but for Swagger 2.0 documents.
  • connexion takes the same "write spec first, code second" approach as pyramid_openapi3, but is based on Flask.
  • bottle-swagger takes the same "write spec first, code second" approach too, but is based on Bottle.
  • pyramid_apispec uses generation with help of apispec and the marshmallow validation library. See above why we prefer validation instead of generation.

Deprecation policy

We do our best to follow the rules below.

  • Support the latest few releases of Python, currently Python 3.7, 3.8, and 3.9.
  • Support the latest few releases of Pyramid, currently 1.10.7 through 2.0.
  • Support the latest few releases of openapi-core, currently 0.13.4 through 0.13.8.
  • See Pipfile.lock for a frozen-in-time known-good-set of all dependencies.

Use in the wild

A couple of projects that use pyramid_openapi3 in production:

Owner
Pylons Project
The Pylons Project is composed of a disparate group of project leaders with experience going back to the very start of Python web frameworks.
Pylons Project
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
This repository contains small projects related to Neural Networks and Deep Learning in general.

ILearnDeepLearning.py Description People say that nothing develops and teaches you like getting your hands dirty. This repository contains small proje

Piotr Skalski 1.2k Dec 22, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
Facial Expression Detection In The Realtime

The human's facial expressions is very important to detect thier emotions and sentiment. It can be very efficient to use to make our computers make interviews. Furthermore, we have robots now can det

Adel El-Nabarawy 4 Mar 01, 2022
The source code for Adaptive Kernel Graph Neural Network at AAAI2022

AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi

11 Nov 25, 2022
TDmatch is a Python library developed to perform matching tasks in three categories:

TDmatch TDmatch is a Python library developed to perform matching tasks in three categories: Text to Data which matches tuples of a table to text docu

Naser Ahmadi 5 Aug 11, 2022
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022